Phyloseq microbiome
1 Data
Import raw data and assign sample key:
# extend map_corrected.txt with Diet and Flora
# setwd('~/DATA/Data_Laura_16S_2/core_diversity_e4753')
map_corrected <- read.csv("../map_corrected.txt", sep = "\t", row.names = 1)
knitr::kable(map_corrected) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
BarcodeSequence | LinkerPrimerSequence | FileInput | Group | Sex_age | pre_post_stroke | Conc | Vol_50ng | Vol_PCR | Description |
---|---|---|---|---|---|---|---|---|---|
NA | NA | 6341_S1_R1.fastq.gz_merged.fasta | Group1 | f.aged | post | 19.2 | 2.60 | 2.60 | PCR1 |
NA | NA | 6340_S2_R1.fastq.gz_merged.fasta | Group1 | f.aged | post | 16.2 | 3.09 | 3.09 | PCR1 |
NA | NA | 6342_S3_R1.fastq.gz_merged.fasta | Group1 | f.aged | post | 6.3 | 7.94 | 5.00 | PCR1 |
NA | NA | 8129_S4_R1.fastq.gz_merged.fasta | Group1 | f.aged | post | 28.3 | 1.77 | 1.77 | PCR1 |
NA | NA | 8130_S5_R1.fastq.gz_merged.fasta | Group1 | f.aged | post | 7.3 | 6.85 | 5.00 | PCR1 |
NA | NA | 8128_S6_R1.fastq.gz_merged.fasta | Group1 | f.aged | post | 11.1 | 4.50 | 4.50 | PCR1 |
NA | NA | 9989_S7_R1.fastq.gz_merged.fasta | Group1 | f.aged | post | 19.7 | 2.54 | 2.54 | PCR1 |
NA | NA | 6341_S8_R1.fastq.gz_merged.fasta | Group2 | f.aged | pre | 18.0 | 2.78 | 2.78 | PCR1 |
NA | NA | 6340_S9_R1.fastq.gz_merged.fasta | Group2 | f.aged | pre | 57.9 | 0.86 | 0.86 | PCR2 |
NA | NA | 6342_S10_R1.fastq.gz_merged.fasta | Group2 | f.aged | pre | 17.0 | 2.94 | 2.94 | PCR2 |
NA | NA | 8129_S11_R1.fastq.gz_merged.fasta | Group2 | f.aged | pre | 14.2 | 3.52 | 3.52 | PCR2 |
NA | NA | 8130_S12_R1.fastq.gz_merged.fasta | Group2 | f.aged | pre | 19.5 | 2.56 | 2.56 | PCR2 |
NA | NA | 8128_S13_R1.fastq.gz_merged.fasta | Group2 | f.aged | pre | 35.1 | 1.42 | 1.42 | PCR2 |
NA | NA | 9989_S14_R1.fastq.gz_merged.fasta | Group2 | f.aged | pre | 7.9 | 6.33 | 5.00 | PCR2 |
NA | NA | 16880_S15_R1.fastq.gz_merged.fasta | Group3 | f.young | post | 8.2 | 6.10 | 5.00 | PCR2 |
NA | NA | 16681_S16_R1.fastq.gz_merged.fasta | Group3 | f.young | post | 7.2 | 6.94 | 5.00 | PCR2 |
NA | NA | 16685_S17_R1.fastq.gz_merged.fasta | Group3 | f.young | post | 13.1 | 3.82 | 3.82 | PCR3 |
NA | NA | 16686_S18_R1.fastq.gz_merged.fasta | Group3 | f.young | post | 13.2 | 3.79 | 3.79 | PCR3 |
NA | NA | 16819_S19_R1.fastq.gz_merged.fasta | Group3 | f.young | post | 16.3 | 3.07 | 3.07 | PCR3 |
NA | NA | 21909_S20_R1.fastq.gz_merged.fasta | Group3 | f.young | post | 2.6 | 19.23 | 5.00 | PCR3 |
NA | NA | 16880_S21_R1.fastq.gz_merged.fasta | Group4 | f.young | pre | 17.0 | 2.94 | 2.94 | PCR3 |
NA | NA | 16681_S22_R1.fastq.gz_merged.fasta | Group4 | f.young | pre | 17.6 | 2.84 | 2.84 | PCR3 |
NA | NA | 16685_S23_R1.fastq.gz_merged.fasta | Group4 | f.young | pre | 20.2 | 2.48 | 2.48 | PCR3 |
NA | NA | 16686_S24_R1.fastq.gz_merged.fasta | Group4 | f.young | pre | 29.0 | 1.72 | 1.72 | PCR3 |
NA | NA | 16819_S25_R1.fastq.gz_merged.fasta | Group4 | f.young | pre | 27.0 | 1.85 | 1.85 | PCR4 |
NA | NA | 16684_S26_R1.fastq.gz_merged.fasta | Group4 | f.young | pre | 4.3 | 11.63 | 5.00 | PCR4 |
NA | NA | 21908_S27_R1.fastq.gz_merged.fasta | Group4 | f.young | pre | 18.0 | 2.78 | 2.78 | PCR4 |
NA | NA | 21909_S28_R1.fastq.gz_merged.fasta | Group4 | f.young | pre | 9.4 | 5.32 | 5.00 | PCR4 |
NA | NA | 4896_S29_R1.fastq.gz_merged.fasta | Group5 | m.aged | post | 25.0 | 2.00 | 2.00 | PCR4 |
NA | NA | 4897_S30_R1.fastq.gz_merged.fasta | Group5 | m.aged | post | 25.2 | 1.98 | 1.98 | PCR4 |
NA | NA | 4900_S31_R1.fastq.gz_merged.fasta | Group5 | m.aged | post | 15.7 | 3.18 | 3.18 | PCR4 |
NA | NA | 9976_S32_R1.fastq.gz_merged.fasta | Group5 | m.aged | post | 34.0 | 1.47 | 1.47 | PCR4 |
NA | NA | 4896_S33_R1.fastq.gz_merged.fasta | Group6 | m.aged | pre | 44.0 | 1.14 | 1.14 | PCR5 |
NA | NA | 4897_S34_R1.fastq.gz_merged.fasta | Group6 | m.aged | pre | 41.0 | 1.22 | 1.22 | PCR5 |
NA | NA | 4900_S35_R1.fastq.gz_merged.fasta | Group6 | m.aged | pre | 28.5 | 1.75 | 1.75 | PCR5 |
NA | NA | 4898_S36_R1.fastq.gz_merged.fasta | Group6 | m.aged | pre | 96.0 | 0.52 | 0.52 | PCR5 |
NA | NA | 5114_S37_R1.fastq.gz_merged.fasta | Group6 | m.aged | pre | 21.9 | 2.28 | 2.28 | PCR5 |
NA | NA | 9975_S38_R1.fastq.gz_merged.fasta | Group6 | m.aged | pre | 15.7 | 3.18 | 3.18 | PCR5 |
NA | NA | 9976_S39_R1.fastq.gz_merged.fasta | Group6 | m.aged | pre | 6.5 | 7.69 | 5.00 | PCR5 |
NA | NA | 16888_S40_R1.fastq.gz_merged.fasta | Group7 | m.young | post | 38.0 | 1.32 | 1.32 | PCR5 |
NA | NA | 16625_S41_R1.fastq.gz_merged.fasta | Group7 | m.young | post | 7.8 | 6.41 | 5.00 | PCR6 |
NA | NA | 16824_S42_R1.fastq.gz_merged.fasta | Group7 | m.young | post | 42.1 | 1.19 | 1.19 | PCR6 |
NA | NA | 16826_S43_R1.fastq.gz_merged.fasta | Group7 | m.young | post | 18.1 | 2.76 | 2.76 | PCR6 |
NA | NA | 16827_S44_R1.fastq.gz_merged.fasta | Group7 | m.young | post | 9.6 | 5.21 | 5.00 | PCR6 |
NA | NA | 21911_S45_R1.fastq.gz_merged.fasta | Group7 | m.young | post | 29.6 | 1.69 | 1.69 | PCR6 |
NA | NA | 21914_S46_R1.fastq.gz_merged.fasta | Group7 | m.young | post | 62.3 | 0.80 | 0.80 | PCR6 |
NA | NA | 16888_S47_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 13.0 | 3.85 | 3.85 | PCR6 |
NA | NA | 16625_S48_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 43.1 | 1.16 | 1.16 | PCR6 |
NA | NA | 16824_S49_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 13.2 | 3.79 | 3.79 | PCR7 |
NA | NA | 16826_S50_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 32.2 | 1.55 | 1.55 | PCR7 |
NA | NA | 5115_S51_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 33.2 | 1.51 | 1.51 | PCR7 |
NA | NA | 16827_S52_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 12.8 | 3.91 | 3.91 | PCR7 |
NA | NA | 16691_S53_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 20.7 | 2.42 | 2.42 | PCR7 |
NA | NA | 21911_S54_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 9.8 | 5.10 | 5.00 | PCR7 |
NA | NA | 21914_S55_R1.fastq.gz_merged.fasta | Group8 | m.young | pre | 6.8 | 7.35 | 5.00 | PCR7 |
2 Prerequisites to be installed
- R : https://pbil.univ-lyon1.fr/CRAN/
- R studio : https://www.rstudio.com/products/rstudio/download/#download
install.packages("dplyr") # To manipulate dataframes
install.packages("readxl") # To read Excel files into R
install.packages("ggplot2") # for high quality graphics
source("https://bioconductor.org/biocLite.R")
biocLite("phyloseq")
# library('phyloseq') library('ggplot2') # graphics library('readxl') #
# necessary to import the data from Excel file library('dplyr') # filter and
# reformat data frames
library("ggplot2")
library("picante")
library("microbiome") # data analysis and visualisation
library("phyloseq") # also the basis of data object. Data analysis and visualisation
library("ggpubr") # publication quality figures, based on ggplot2
library("dplyr") # data handling
library("RColorBrewer") # nice color options
3 Read the data and create phyloseq objects
Three tables are needed
- OTU
- Taxonomy
- Samples
# Change your working directory to where the files are located
ps.ng.tax <- import_biom("./table_even42434.biom", "../clustering/rep_set.tre")
sample <- read.csv("../map_corrected.txt", sep = "\t", row.names = 1)
# MODIFIED > rownames(SAM) [1] 'sa1' 'sa2' 'sa3' 'sa4' 'sa5' 'sa6' 'sa7' 'sa8'
# 'sa9' 'sa10' [11] 'sa11' 'sa12' 'sa13' 'sa14' 'sa15' 'sa16' 'sa17' 'sa18'
# 'sa19' 'sa20' [21] 'sa21' 'sa22' 'sa23' 'sa24' 'sa25' 'sa26' 'sa27' 'sa28'
# 'sa29' 'sa30' [31] 'sa31' 'sa32' 'sa33' 'sa34' 'sa35' 'sa36' 'sa37' 'sa38'
# 'sa39' 'sa40' [41] 'sa41' 'sa42' 'sa43' 'sa44' 'sa45' 'sa46' 'sa47' 'sa48'
# 'sa49' 'sa50' [51] 'sa51' 'sa52' 'sa53' 'sa54' 'sa55'
SAM = sample_data(sample, errorIfNULL = T)
rownames(SAM) <- c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12",
"13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25",
"26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38",
"39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51",
"52", "53", "54", "55")
ps.ng.tax <- merge_phyloseq(ps.ng.tax, SAM)
print(ps.ng.tax)
phyloseq-class experiment-level object
otu_table() OTU Table: [ 40594 taxa and 54 samples ]
sample_data() Sample Data: [ 54 samples by 10 sample variables ]
tax_table() Taxonomy Table: [ 40594 taxa by 7 taxonomic ranks ]
phy_tree() Phylogenetic Tree: [ 40594 tips and 40592 internal nodes ]
# otu_table(ps.ng.tax) 17 53 49 26 36 10 51 8 14 29 20 31 24 34 2 35 27 21 13
# 23 38 9 32 37 48 52 33 25 12 39 22 18 6 11 50 55 1 44 43 46 16 47 28 5 41 15
# 30 42 7 45 4 19 54 40 ID01 ID03 ID11 ID12 ID02 ID16 ID15 ID04 ID05 ID08 ID10
# ID09 ID07 ID14 ID18 ID06 ID17 > colnames(sample_data(ps.ng.tax)) [1]
# 'BarcodeSequence' 'LinkerPrimerSequence' 'FileInput' [4] 'Group' 'Sex_age'
# 'pre_post_stroke' [7] 'Conc' 'Vol_50ng' 'Vol_PCR' [10] 'Description'
colnames(tax_table(ps.ng.tax)) <- c("Domain", "Phylum", "Class", "Order", "Family",
"Genus", "Species")
saveRDS(ps.ng.tax, "./ps.ng.tax.rds")
Visualize data
[1] "17" "53" "49" "26" "36" "10" "51" "8" "14" "29" "20" "31" "24" "34" "2"
[16] "35" "27" "21" "13" "23" "38" "9" "32" "37" "48" "52" "33" "25" "12" "39"
[31] "22" "18" "6" "11" "50" "55" "1" "44" "43" "46" "16" "47" "28" "5" "41"
[46] "15" "30" "42" "7" "45" "4" "19" "54" "40"
[1] "Domain" "Phylum" "Class" "Order" "Family" "Genus" "Species"
[1] "BarcodeSequence" "LinkerPrimerSequence" "FileInput"
[4] "Group" "Sex_age" "pre_post_stroke"
[7] "Conc" "Vol_50ng" "Vol_PCR"
[10] "Description"
Normalize number of reads in each sample using median sequencing depth.
# RAREFACTION set.seed(9242) # This will help in reproducing the filtering and
# nomalisation. ps.ng.tax <- rarefy_even_depth(ps.ng.tax, sample.size = 42434)
# total <- 42434
# NORMALIZE number of reads in each sample using median sequencing depth.
total = median(sample_sums(ps.ng.tax))
# > total [1] 42434
standf = function(x, t = total) round(t * (x/sum(x)))
ps.ng.tax = transform_sample_counts(ps.ng.tax, standf)
ps.ng.tax_rel <- microbiome::transform(ps.ng.tax, "compositional")
saveRDS(ps.ng.tax, "./ps.ng.tax.rds")
hmp.meta <- meta(ps.ng.tax)
hmp.meta$sam_name <- rownames(hmp.meta)
4 Heatmaps
# MOVE_FROM_ABOVE: The number of reads used for normalization is **`r
# sprintf('%.0f', total)`**. A basic heatmap using the default parameters.
# plot_heatmap(ps.ng.tax, method = 'NMDS', distance = 'bray') NOTE that giving
# the correct OTU numbers in the text (1%, 0.5%, ...)!!!
We consider the most abundant OTUs for heatmaps. For example one can only take OTUs that represent at least 1% of reads in at least one sample. Remember we normalized all the sampples to median number of reads (total). We are left with only 166 OTUS which makes the reading much more easy.
ps.ng.tax_abund <- phyloseq::filter_taxa(ps.ng.tax, function(x) sum(x > total * 0.01) >
0, TRUE)
kable(otu_table(ps.ng.tax_abund)) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
17 | 53 | 49 | 26 | 36 | 10 | 51 | 8 | 14 | 29 | 20 | 31 | 24 | 34 | 2 | 35 | 27 | 21 | 13 | 23 | 38 | 9 | 32 | 37 | 48 | 52 | 33 | 25 | 12 | 39 | 22 | 18 | 6 | 11 | 50 | 55 | 1 | 44 | 43 | 46 | 16 | 47 | 28 | 5 | 41 | 15 | 30 | 42 | 7 | 45 | 4 | 19 | 54 | 40 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EU505095.1.1391 | 0 | 0 | 443 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 69 | 0 | 0 | 0 | 0 | 0 | 0 |
HK240365.1.1492 | 3 | 13 | 4455 | 8 | 3713 | 2 | 6824 | 5 | 8144 | 4375 | 1 | 3778 | 5 | 5516 | 2 | 4897 | 5 | 4 | 33 | 11 | 46 | 6 | 11 | 8747 | 9 | 1043 | 1548 | 3 | 2 | 6 | 6043 | 2 | 1094 | 40 | 2022 | 1 | 2 | 9440 | 7671 | 3 | 11535 | 2 | 2 | 3 | 8 | 0 | 4566 | 7614 | 6920 | 10 | 1179 | 2 | 5 | 16 |
EU791193.1.1502 | 2189 | 335 | 210 | 199 | 52 | 415 | 339 | 731 | 273 | 166 | 57 | 571 | 89 | 93 | 1538 | 92 | 168 | 520 | 240 | 408 | 185 | 456 | 526 | 97 | 1224 | 262 | 333 | 251 | 389 | 267 | 262 | 774 | 661 | 1220 | 196 | 7 | 1296 | 206 | 217 | 622 | 111 | 318 | 1 | 770 | 1682 | 267 | 464 | 274 | 750 | 0 | 1531 | 702 | 0 | 125 |
EF406536.1.1499 | 368 | 102 | 159 | 101 | 179 | 285 | 600 | 647 | 381 | 622 | 298 | 865 | 264 | 669 | 135 | 454 | 192 | 137 | 353 | 370 | 659 | 194 | 1246 | 350 | 615 | 833 | 636 | 234 | 345 | 537 | 377 | 450 | 194 | 452 | 188 | 192 | 684 | 226 | 193 | 247 | 342 | 222 | 251 | 14 | 33 | 99 | 1410 | 490 | 1334 | 379 | 892 | 133 | 127 | 183 |
EU791223.1.1512 | 159 | 43 | 60 | 36 | 101 | 96 | 179 | 234 | 139 | 211 | 101 | 256 | 101 | 318 | 47 | 205 | 67 | 66 | 122 | 192 | 283 | 65 | 405 | 160 | 245 | 301 | 303 | 51 | 150 | 248 | 92 | 203 | 70 | 168 | 46 | 71 | 255 | 54 | 64 | 85 | 120 | 61 | 118 | 9 | 11 | 36 | 431 | 139 | 462 | 116 | 292 | 28 | 39 | 104 |
JX198570.1.1508 | 0 | 0 | 0 | 0 | 4 | 378 | 19 | 61 | 8 | 4 | 4 | 30 | 0 | 59 | 269 | 5 | 0 | 0 | 2 | 0 | 173 | 16 | 79 | 7 | 0 | 0 | 1 | 0 | 58 | 32 | 0 | 0 | 2 | 432 | 0 | 0 | 119 | 0 | 1 | 0 | 0 | 0 | 1 | 143 | 16 | 0 | 28 | 0 | 1 | 0 | 3 | 0 | 0 | 56 |
CVUG01000013.3917.5427 | 33 | 8 | 12 | 8 | 10 | 37 | 10 | 0 | 23 | 26 | 71 | 15 | 5 | 69 | 27 | 40 | 105 | 0 | 95 | 2 | 205 | 60 | 271 | 15 | 0 | 47 | 58 | 247 | 43 | 187 | 30 | 12 | 17 | 195 | 42 | 17 | 35 | 32 | 29 | 53 | 81 | 7 | 65 | 119 | 7 | 121 | 14 | 29 | 86 | 56 | 200 | 585 | 23 | 9 |
HL966144.1.1491 | 0 | 7 | 3 | 11 | 70 | 99 | 9 | 0 | 11 | 0 | 26 | 28 | 0 | 94 | 0 | 22 | 22 | 5 | 0 | 0 | 0 | 398 | 427 | 3 | 23 | 12 | 0 | 33 | 0 | 54 | 5 | 0 | 0 | 0 | 10 | 4 | 6 | 2 | 1 | 18 | 9 | 6 | 48 | 0 | 10 | 30 | 51 | 0 | 52 | 49 | 0 | 167 | 8 | 2 |
AB606239.1.1494 | 722 | 27 | 24 | 38 | 120 | 97 | 64 | 5 | 14 | 238 | 146 | 365 | 45 | 193 | 40 | 720 | 107 | 0 | 7 | 40 | 24 | 179 | 98 | 86 | 6 | 32 | 313 | 92 | 84 | 14 | 14 | 200 | 10 | 1 | 33 | 91 | 403 | 23 | 9 | 199 | 44 | 51 | 45 | 138 | 34 | 445 | 196 | 2 | 118 | 631 | 10 | 177 | 178 | 18 |
AB622814.1.1518 | 39 | 55 | 34 | 5 | 11 | 18 | 14 | 1 | 9 | 7 | 109 | 12 | 16 | 14 | 3 | 14 | 260 | 4 | 6 | 2 | 29 | 77 | 36 | 13 | 16 | 60 | 5 | 153 | 84 | 39 | 29 | 4 | 0 | 9 | 92 | 2 | 10 | 18 | 5 | 46 | 94 | 24 | 61 | 103 | 98 | 104 | 8 | 3 | 22 | 100 | 13 | 522 | 66 | 36 |
FJ880076.1.1490 | 123 | 14 | 6 | 0 | 181 | 11 | 32 | 34 | 9 | 0 | 2 | 21 | 0 | 37 | 78 | 180 | 4 | 15 | 2 | 14 | 24 | 3 | 85 | 54 | 11 | 1 | 12 | 6 | 7 | 820 | 42 | 0 | 11 | 10 | 35 | 0 | 11 | 2 | 13 | 2 | 1 | 0 | 1 | 25 | 22 | 0 | 3 | 19 | 27 | 1 | 11 | 1 | 1 | 7 |
JQ084417.1.1495 | 64 | 18 | 3 | 10 | 1 | 9 | 1 | 1 | 5 | 163 | 23 | 9 | 31 | 32 | 0 | 22 | 26 | 1 | 9 | 16 | 27 | 14 | 19 | 2 | 32 | 12 | 546 | 24 | 24 | 0 | 3 | 26 | 12 | 7 | 20 | 3 | 3 | 8 | 13 | 75 | 17 | 17 | 30 | 18 | 33 | 51 | 11 | 12 | 3 | 28 | 15 | 117 | 17 | 163 |
JQ084693.1.1491 | 143 | 76 | 71 | 42 | 429 | 215 | 75 | 17 | 41 | 131 | 130 | 1 | 331 | 178 | 197 | 0 | 114 | 24 | 214 | 33 | 194 | 72 | 147 | 13 | 186 | 50 | 163 | 634 | 258 | 45 | 42 | 136 | 21 | 92 | 49 | 52 | 174 | 42 | 13 | 196 | 37 | 23 | 204 | 167 | 194 | 26 | 90 | 43 | 22 | 23 | 88 | 227 | 74 | 106 |
AB606325.1.1494 | 5 | 88 | 16 | 0 | 30 | 14 | 61 | 0 | 0 | 20 | 232 | 24 | 14 | 86 | 37 | 96 | 231 | 12 | 88 | 0 | 38 | 15 | 28 | 11 | 6 | 52 | 99 | 330 | 242 | 8 | 62 | 8 | 123 | 199 | 222 | 8 | 61 | 57 | 108 | 54 | 70 | 22 | 91 | 533 | 10 | 198 | 47 | 394 | 20 | 111 | 259 | 376 | 46 | 28 |
ASTC01000013.23144.24660 | 629 | 217 | 33 | 29 | 257 | 88 | 316 | 2 | 7 | 70 | 54 | 26 | 15 | 58 | 148 | 10 | 29 | 52 | 21 | 29 | 32 | 131 | 183 | 46 | 30 | 24 | 47 | 45 | 31 | 26 | 14 | 27 | 28 | 15 | 43 | 15 | 390 | 30 | 2 | 141 | 8 | 104 | 30 | 17 | 95 | 53 | 89 | 8 | 21 | 41 | 21 | 12 | 68 | 1025 |
JQ084374.1.1490 | 3 | 0 | 0 | 0 | 1325 | 56 | 19 | 2 | 4 | 18 | 6 | 1 | 3 | 127 | 136 | 0 | 9 | 6 | 0 | 12 | 18 | 235 | 2 | 9 | 80 | 0 | 106 | 32 | 61 | 3 | 1 | 9 | 0 | 4 | 0 | 6 | 39 | 0 | 0 | 16 | 0 | 0 | 7 | 29 | 6 | 0 | 19 | 0 | 0 | 1 | 1 | 0 | 8 | 7 |
EF602810.1.1476 | 220 | 4 | 1 | 198 | 1 | 172 | 5 | 35 | 48 | 9 | 4 | 1 | 144 | 8 | 73 | 1 | 5 | 17 | 690 | 36 | 3 | 14 | 2 | 0 | 51 | 3 | 82 | 41 | 66 | 0 | 0 | 20 | 1 | 3 | 2 | 2 | 27 | 1 | 4 | 45 | 1 | 0 | 5 | 4 | 9 | 11 | 7 | 3 | 33 | 1 | 2 | 0 | 4 | 3 |
HL953771.1.1511 | 316 | 161 | 37 | 39 | 47 | 57 | 38 | 2 | 53 | 221 | 301 | 37 | 230 | 55 | 33 | 34 | 453 | 256 | 103 | 46 | 126 | 95 | 1414 | 14 | 264 | 154 | 274 | 459 | 94 | 398 | 30 | 68 | 42 | 79 | 129 | 49 | 174 | 49 | 23 | 277 | 42 | 66 | 93 | 59 | 783 | 125 | 54 | 44 | 411 | 152 | 129 | 0 | 125 | 1373 |
AB969468.1.1539 | 2 | 4 | 81 | 2 | 2829 | 299 | 1152 | 2 | 16 | 2611 | 28 | 1128 | 3 | 2719 | 807 | 3943 | 126 | 34 | 18 | 1 | 2 | 4 | 1287 | 702 | 391 | 0 | 622 | 17 | 48 | 1414 | 80 | 4 | 4006 | 1717 | 115 | 150 | 312 | 4 | 2 | 34 | 1 | 29 | 16 | 109 | 90 | 5 | 903 | 383 | 180 | 1 | 1483 | 26 | 3 | 5 |
ASSR01000026.1887.3427 | 532 | 185 | 177 | 1987 | 41 | 2 | 2 | 1 | 2 | 1 | 52 | 0 | 37 | 2 | 3 | 3 | 746 | 830 | 0 | 1072 | 0 | 6 | 5 | 2 | 91 | 407 | 0 | 5 | 2083 | 4 | 1 | 5 | 5 | 6 | 853 | 84 | 3 | 7 | 1 | 131 | 0 | 87 | 592 | 514 | 101 | 3 | 9 | 17 | 0 | 13 | 8 | 0 | 390 | 5 |
New.ReferenceOTU515 | 1379 | 2776 | 690 | 6 | 128 | 8 | 3 | 27 | 3 | 12 | 2 | 224 | 6613 | 416 | 921 | 477 | 10 | 6 | 291 | 576 | 789 | 4342 | 151 | 3 | 7 | 2916 | 179 | 3708 | 2 | 1 | 656 | 380 | 24 | 201 | 1033 | 1 | 32 | 1337 | 1182 | 2 | 286 | 1454 | 5 | 2 | 2 | 1792 | 106 | 1 | 4 | 1 | 109 | 1 | 9 | 1 |
EF406647.1.1503 | 106 | 186 | 52 | 0 | 14 | 3 | 0 | 2 | 1 | 4 | 0 | 12 | 550 | 29 | 76 | 45 | 1 | 0 | 35 | 36 | 76 | 321 | 16 | 0 | 1 | 228 | 21 | 273 | 1 | 2 | 45 | 30 | 3 | 15 | 95 | 1 | 3 | 86 | 60 | 1 | 24 | 88 | 0 | 1 | 0 | 120 | 7 | 0 | 2 | 0 | 9 | 0 | 0 | 0 |
ASSX01000038.243.1764 | 327 | 9 | 5 | 0 | 0 | 0 | 903 | 0 | 32 | 1 | 15 | 0 | 0 | 0 | 0 | 1 | 4 | 6 | 82 | 813 | 0 | 0 | 0 | 660 | 56 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 0 | 465 | 0 | 39 | 0 | 3 | 1 | 20 | 0 | 0 | 82 | 7 | 8 | 0 | 0 | 0 | 2 | 4 | 248 | 2 | 0 | 2 |
HK693730.8.1517 | 1 | 4 | 2 | 0 | 0 | 460 | 0 | 12 | 0 | 0 | 0 | 1 | 13 | 1 | 10 | 0 | 0 | 1 | 3 | 0 | 5 | 27 | 1 | 0 | 0 | 6 | 0 | 12 | 3 | 0 | 2 | 2 | 0 | 3 | 1 | 0 | 7 | 4 | 0 | 0 | 2 | 2 | 0 | 4 | 1 | 3 | 4 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
New.ReferenceOTU186 | 3 | 39 | 5 | 14 | 8 | 1050 | 44 | 40 | 0 | 8 | 7 | 10 | 1 | 62 | 52 | 1 | 83 | 26 | 52 | 0 | 175 | 50 | 8 | 36 | 20 | 2 | 0 | 26 | 58 | 3 | 9 | 5 | 11 | 8 | 39 | 4 | 23 | 1 | 4 | 22 | 1 | 6 | 5 | 100 | 10 | 62 | 49 | 12 | 1 | 5 | 13 | 3 | 16 | 4 |
AB606268.1.1497 | 0 | 186 | 3 | 0 | 56 | 508 | 203 | 26 | 0 | 2 | 34 | 30 | 0 | 257 | 10 | 0 | 466 | 31 | 0 | 1 | 844 | 24 | 8 | 192 | 8 | 0 | 1 | 4 | 5 | 19 | 42 | 2 | 0 | 1 | 58 | 2 | 10 | 0 | 0 | 1 | 0 | 9 | 32 | 3 | 25 | 346 | 125 | 6 | 2 | 0 | 0 | 0 | 0 | 2 |
New.ReferenceOTU16 | 0 | 110 | 1 | 0 | 31 | 284 | 154 | 16 | 0 | 0 | 20 | 19 | 0 | 166 | 3 | 0 | 258 | 25 | 1 | 0 | 569 | 12 | 5 | 98 | 6 | 0 | 1 | 2 | 6 | 13 | 12 | 2 | 0 | 2 | 36 | 0 | 8 | 0 | 0 | 0 | 0 | 9 | 9 | 2 | 25 | 248 | 101 | 6 | 0 | 0 | 1 | 0 | 0 | 0 |
JPNB01000002.737568.739079 | 2 | 217 | 4 | 4 | 43 | 664 | 323 | 19 | 0 | 2 | 46 | 51 | 4 | 266 | 15 | 0 | 728 | 48 | 3 | 1 | 830 | 16 | 23 | 158 | 4 | 2 | 3 | 15 | 18 | 36 | 44 | 2 | 0 | 6 | 83 | 0 | 20 | 1 | 5 | 19 | 3 | 29 | 30 | 7 | 35 | 459 | 233 | 13 | 0 | 5 | 1 | 0 | 13 | 6 |
New.ReferenceOTU336 | 342 | 162 | 50 | 110 | 110 | 303 | 112 | 38 | 59 | 339 | 280 | 390 | 265 | 233 | 128 | 173 | 209 | 32 | 566 | 90 | 86 | 176 | 267 | 33 | 46 | 315 | 3888 | 214 | 1105 | 22 | 78 | 236 | 150 | 290 | 145 | 77 | 290 | 89 | 149 | 336 | 26 | 148 | 139 | 416 | 55 | 373 | 140 | 109 | 104 | 131 | 413 | 191 | 72 | 59 |
New.ReferenceOTU471 | 0 | 5 | 18 | 14 | 1 | 69 | 0 | 9 | 0 | 3 | 2 | 2 | 0 | 4 | 79 | 0 | 1 | 3 | 73 | 1 | 1 | 15 | 7 | 5 | 11 | 9 | 0 | 3 | 168 | 1 | 2 | 6 | 15 | 17 | 0 | 0 | 8 | 1 | 12 | 6 | 3 | 0 | 3 | 467 | 2 | 2 | 3 | 23 | 4 | 9 | 32 | 1 | 6 | 1 |
ACTP02000009.47.1566 | 6 | 3 | 0 | 636 | 0 | 1 | 0 | 3 | 0 | 0 | 11 | 0 | 5 | 3 | 4 | 0 | 0 | 1 | 256 | 3 | 3 | 0 | 3 | 1 | 2 | 1 | 0 | 4 | 58 | 0 | 0 | 19 | 0 | 0 | 4 | 1 | 2 | 0 | 0 | 6 | 0 | 0 | 0 | 21 | 6 | 0 | 1 | 1 | 1 | 8 | 0 | 0 | 44 | 0 |
AB627556.1.1524 | 1 | 277 | 133 | 0 | 143 | 54 | 58 | 195 | 272 | 57 | 1349 | 13 | 0 | 2 | 49 | 6 | 655 | 1 | 0 | 1 | 333 | 9 | 172 | 4 | 0 | 131 | 1 | 0 | 2 | 23 | 103 | 0 | 2 | 1 | 342 | 1 | 24 | 178 | 2 | 4 | 0 | 338 | 129 | 0 | 0 | 398 | 18 | 8 | 4 | 0 | 0 | 2 | 2 | 0 |
New.ReferenceOTU153 | 116 | 45 | 14 | 1 | 37 | 23 | 6 | 13 | 27 | 7 | 181 | 4 | 16 | 0 | 3 | 1 | 91 | 8 | 95 | 3 | 68 | 0 | 36 | 3 | 2 | 22 | 0 | 79 | 0 | 3 | 11 | 18 | 1 | 25 | 48 | 165 | 2 | 21 | 0 | 254 | 0 | 24 | 625 | 2 | 10 | 69 | 9 | 0 | 1 | 1 | 11 | 6 | 528 | 1 |
FJ879443.1.1488 | 0 | 0 | 0 | 655 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 11 | 0 | 0 | 0 | 0 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
JQ083995.1.1490 | 6 | 0 | 0 | 1160 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | 0 | 18 | 0 | 0 | 0 | 0 | 78 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
AB606324.1.1498 | 20 | 52 | 66 | 12 | 1 | 12 | 7 | 2 | 24 | 159 | 10 | 99 | 85 | 15 | 6 | 6 | 71 | 5 | 158 | 0 | 5 | 14 | 29 | 5 | 22 | 29 | 104 | 123 | 71 | 9 | 32 | 36 | 5 | 3 | 26 | 77 | 116 | 33 | 34 | 96 | 10 | 89 | 14 | 84 | 36 | 146 | 70 | 105 | 44 | 129 | 10 | 532 | 34 | 13 |
AB606364.1.1499 | 2 | 7 | 10 | 0 | 0 | 13 | 3 | 2 | 0 | 0 | 0 | 24 | 0 | 0 | 28 | 1 | 1 | 44 | 0 | 0 | 9 | 0 | 10 | 0 | 14 | 0 | 0 | 107 | 0 | 1 | 3 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 4 | 15 | 1 | 0 | 6 | 0 | 838 | 0 | 10 | 1 | 2 | 49 | 0 | 7 | 55 | 35 |
AB626913.1.1497 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 1 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | 0 | 813 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
AB626943.1.1505 | 0 | 11 | 11 | 3 | 11 | 14 | 77 | 44 | 157 | 308 | 0 | 11 | 174 | 96 | 45 | 47 | 39 | 2 | 20 | 0 | 7 | 69 | 5 | 2 | 19 | 5 | 77 | 13 | 20 | 0 | 0 | 159 | 4 | 14 | 26 | 8 | 85 | 7 | 1 | 6 | 0 | 50 | 8 | 50 | 78 | 23 | 177 | 43 | 566 | 14 | 11 | 241 | 9 | 50 |
New.ReferenceOTU371 | 1 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 1824 | 0 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
AATF01001259.61.1571 | 6 | 17 | 32 | 506 | 0 | 16 | 66 | 59 | 0 | 35 | 14 | 4 | 6 | 5 | 26 | 7 | 33 | 189 | 0 | 129 | 4 | 145 | 28 | 8 | 4 | 11 | 6 | 30 | 37 | 1 | 54 | 32 | 2 | 40 | 92 | 22 | 304 | 0 | 20 | 14 | 1 | 8 | 21 | 59 | 60 | 7 | 5 | 11 | 9 | 56 | 23 | 7 | 39 | 43 |
AB606370.1.1495 | 385 | 10 | 25 | 747 | 2 | 715 | 3 | 187 | 85 | 287 | 32 | 385 | 754 | 66 | 648 | 12 | 93 | 33 | 1763 | 237 | 2 | 170 | 31 | 8 | 195 | 33 | 51 | 20 | 92 | 13 | 41 | 256 | 25 | 155 | 88 | 24 | 457 | 10 | 57 | 151 | 3 | 38 | 41 | 132 | 274 | 208 | 135 | 67 | 163 | 5 | 293 | 200 | 56 | 113 |
JN012616.1.1459 | 0 | 10 | 118 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 420 | 0 | 0 | 0 | 0 | 0 | 0 | 501 | 0 | 0 | 0 | 0 | 0 | 130 | 0 | 0 | 0 | 164 | 6 | 0 | 4 | 0 | 85 | 0 | 0 | 0 | 0 | 133 | 0 | 0 | 62 | 0 | 0 | 0 | 0 | 0 | 230 |
EF603872.1.1478 | 594 | 2 | 41 | 1 | 9 | 0 | 0 | 0 | 0 | 1 | 8 | 0 | 0 | 0 | 0 | 0 | 3 | 6 | 0 | 1108 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 591 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 29 | 0 | 0 | 61 | 171 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 9 | 0 |
AQFU01000029.6100.7620 | 73 | 12 | 13 | 96 | 14 | 46 | 38 | 206 | 92 | 11 | 37 | 71 | 26 | 242 | 82 | 8 | 59 | 12 | 176 | 50 | 149 | 175 | 115 | 59 | 14 | 82 | 525 | 41 | 319 | 30 | 30 | 13 | 68 | 108 | 18 | 2 | 26 | 22 | 9 | 8 | 29 | 24 | 57 | 565 | 7 | 94 | 127 | 32 | 79 | 157 | 106 | 77 | 20 | 119 |
AB969484.1.1523 | 0 | 80 | 82 | 24 | 734 | 39 | 27 | 4 | 6 | 67 | 101 | 36 | 60 | 133 | 12 | 21 | 71 | 17 | 83 | 0 | 155 | 34 | 98 | 3 | 39 | 1 | 107 | 115 | 22 | 13 | 100 | 51 | 16 | 86 | 41 | 10 | 46 | 10 | 2 | 109 | 0 | 43 | 13 | 35 | 53 | 96 | 35 | 177 | 9 | 31 | 23 | 83 | 8 | 50 |
EF096325.1.1399 | 104 | 264 | 77 | 91 | 0 | 17 | 19 | 89 | 19 | 48 | 2 | 5 | 0 | 0 | 236 | 1 | 10 | 440 | 667 | 285 | 21 | 319 | 128 | 21 | 252 | 27 | 1 | 48 | 550 | 3 | 82 | 2 | 0 | 20 | 52 | 105 | 105 | 0 | 10 | 107 | 1 | 3 | 110 | 727 | 903 | 1 | 95 | 2 | 74 | 572 | 76 | 15 | 197 | 61 |
DQ777894.1.1513 | 347 | 54 | 32 | 14 | 81 | 250 | 33 | 1110 | 229 | 112 | 92 | 27 | 376 | 242 | 467 | 24 | 194 | 147 | 679 | 58 | 238 | 2554 | 458 | 37 | 174 | 178 | 985 | 423 | 63 | 50 | 54 | 232 | 479 | 611 | 22 | 9 | 392 | 193 | 76 | 38 | 168 | 39 | 43 | 21 | 199 | 1023 | 152 | 152 | 404 | 205 | 560 | 228 | 43 | 1039 |
EU622695.1.1497 | 943 | 2055 | 574 | 0 | 3088 | 2 | 1432 | 2214 | 950 | 1178 | 388 | 655 | 327 | 1149 | 4347 | 2361 | 2680 | 2994 | 2137 | 17 | 1056 | 0 | 636 | 1424 | 1734 | 3645 | 1124 | 2825 | 2207 | 768 | 3164 | 1296 | 3272 | 3679 | 2108 | 36 | 0 | 3610 | 5342 | 1569 | 1828 | 3683 | 12 | 5694 | 3001 | 2631 | 366 | 174 | 150 | 14 | 2723 | 396 | 118 | 129 |
AB702763.1.1498 | 0 | 0 | 0 | 0 | 0 | 927 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 309 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 429 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
EU622762.1.1520 | 47 | 164 | 0 | 0 | 0 | 7 | 0 | 282 | 3 | 1 | 0 | 0 | 4 | 0 | 188 | 0 | 110 | 1157 | 1 | 2 | 42 | 0 | 121 | 0 | 20 | 67 | 0 | 7 | 0 | 299 | 300 | 8 | 0 | 0 | 292 | 1 | 1 | 596 | 4 | 0 | 14 | 440 | 0 | 0 | 284 | 480 | 1 | 1 | 23 | 0 | 0 | 42 | 0 | 94 |
JQ084406.1.1485 | 0 | 440 | 162 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 601 | 0 | 0 | 0 | 0 | 0 | 363 | 0 | 449 | 1 | 627 | 1 | 181 | 1 | 0 | 105 | 0 | 549 | 475 | 294 | 214 | 0 | 259 | 622 | 177 | 436 | 0 | 318 | 523 | 131 | 169 | 378 | 932 | 529 | 0 | 228 | 0 | 267 | 1 | 543 | 42 | 30 | 717 | 0 |
New.ReferenceOTU511 | 0 | 131 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 468 | 1 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 191 | 0 | 179 | 0 | 0 | 109 | 0 | 71 | 1 | 23 | 8 | 0 | 367 | 1390 | 18 | 745 | 2 | 11 | 13 | 0 | 119 | 0 | 4 | 0 | 5 | 27 | 466 | 41 | 0 |
AB021157.1.1508 | 0 | 752 | 339 | 0 | 0 | 999 | 527 | 455 | 372 | 0 | 642 | 1 | 2 | 1 | 2131 | 1 | 107 | 0 | 17 | 1 | 311 | 245 | 4170 | 418 | 1 | 1077 | 0 | 490 | 3 | 1144 | 692 | 0 | 1581 | 995 | 286 | 3 | 1848 | 96 | 403 | 542 | 1195 | 891 | 229 | 2 | 0 | 1406 | 0 | 3212 | 2376 | 1902 | 5309 | 515 | 251 | 0 |
BAIW01000188.173.1680 | 1 | 15 | 48 | 0 | 327 | 36 | 32 | 121 | 71 | 1817 | 37 | 2079 | 0 | 410 | 150 | 600 | 4 | 2 | 21 | 3 | 140 | 20 | 144 | 60 | 0 | 31 | 329 | 63 | 2 | 38 | 7 | 0 | 835 | 104 | 5 | 16 | 1547 | 0 | 22 | 104 | 36 | 23 | 42 | 2 | 1 | 35 | 1474 | 4 | 963 | 81 | 73 | 539 | 27 | 0 |
CP015401.3482423.3483958 | 522 | 98 | 120 | 20 | 74 | 121 | 161 | 265 | 117 | 76 | 36 | 191 | 376 | 67 | 330 | 75 | 83 | 99 | 128 | 115 | 75 | 210 | 84 | 98 | 176 | 109 | 135 | 99 | 74 | 156 | 101 | 1242 | 435 | 112 | 45 | 71 | 215 | 69 | 259 | 391 | 161 | 271 | 83 | 372 | 1529 | 348 | 92 | 48 | 63 | 67 | 16 | 156 | 258 | 198 |
LT622246.247875.249393 | 0 | 55 | 146 | 1 | 938 | 248 | 118 | 627 | 421 | 7905 | 161 | 11080 | 0 | 1374 | 868 | 1953 | 51 | 1 | 149 | 9 | 487 | 157 | 705 | 220 | 1 | 115 | 1153 | 370 | 37 | 106 | 51 | 2 | 4352 | 590 | 34 | 54 | 9319 | 10 | 157 | 796 | 48 | 137 | 194 | 16 | 2 | 150 | 7669 | 38 | 4938 | 449 | 392 | 2634 | 134 | 3 |
AB559603.1.1522 | 0 | 92 | 112 | 0 | 15 | 101 | 160 | 23 | 66 | 149 | 50 | 234 | 1 | 66 | 257 | 20 | 8 | 184 | 145 | 0 | 53 | 4 | 376 | 159 | 234 | 209 | 89 | 17 | 5 | 411 | 231 | 1 | 100 | 122 | 44 | 118 | 123 | 167 | 308 | 271 | 97 | 166 | 32 | 57 | 111 | 163 | 339 | 87 | 560 | 980 | 306 | 119 | 103 | 161 |
AB627719.1.1500 | 0 | 278 | 0 | 0 | 1 | 141 | 99 | 0 | 199 | 262 | 0 | 57 | 0 | 42 | 104 | 5 | 6 | 26 | 111 | 0 | 32 | 27 | 143 | 38 | 0 | 0 | 54 | 1 | 0 | 20 | 1 | 0 | 58 | 484 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 57 | 0 | 5 | 0 | 335 | 0 | 2 | 155 |
AB606293.1.1476 | 0 | 305 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 197 | 0 | 0 | 0 | 0 | 0 | 111 | 44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 90 | 0 | 0 | 30 | 0 | 0 | 0 | 249 | 0 | 0 | 651 | 0 | 382 | 3 | 0 | 256 | 0 | 0 | 0 | 0 | 42 | 0 | 0 | 0 | 11 | 0 | 72 |
EF406551.1.1491 | 665 | 16 | 3 | 243 | 20 | 4 | 14 | 3 | 12 | 20 | 10 | 52 | 134 | 17 | 42 | 3 | 18 | 3 | 8 | 113 | 27 | 38 | 27 | 2 | 98 | 12 | 33 | 26 | 27 | 0 | 8 | 119 | 2 | 0 | 42 | 4 | 161 | 6 | 2 | 21 | 17 | 4 | 37 | 14 | 47 | 30 | 41 | 41 | 62 | 55 | 11 | 101 | 14 | 11 |
JQ084431.1.1502 | 13 | 3 | 2 | 10 | 249 | 1 | 40 | 9 | 135 | 17 | 62 | 17 | 6 | 5 | 134 | 126 | 93 | 52 | 114 | 5 | 3 | 2 | 7 | 70 | 0 | 33 | 149 | 31 | 15 | 86 | 125 | 4 | 355 | 173 | 15 | 3 | 2 | 6 | 5 | 12 | 24 | 14 | 40 | 147 | 116 | 36 | 0 | 4 | 93 | 202 | 129 | 110 | 20 | 667 |
JX218602.1.1508 | 1 | 1 | 75 | 0 | 0 | 442 | 1 | 74 | 203 | 0 | 109 | 0 | 0 | 0 | 59 | 3 | 3 | 0 | 377 | 0 | 0 | 0 | 0 | 0 | 0 | 35 | 0 | 0 | 7 | 1 | 26 | 0 | 1229 | 545 | 0 | 0 | 1 | 13 | 2 | 8 | 0 | 335 | 197 | 63 | 0 | 69 | 1 | 43 | 134 | 556 | 825 | 142 | 479 | 0 |
EU510524.1.1382 | 709 | 0 | 0 | 0 | 1 | 331 | 0 | 125 | 6 | 3 | 0 | 4 | 0 | 21 | 1 | 53 | 0 | 0 | 0 | 197 | 14 | 0 | 36 | 279 | 0 | 0 | 0 | 0 | 0 | 1640 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 49 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
HL953748.1.1486 | 0 | 1 | 0 | 0 | 143 | 0 | 124 | 49 | 51 | 0 | 0 | 18 | 0 | 0 | 0 | 18 | 14 | 25 | 0 | 0 | 0 | 0 | 21 | 97 | 0 | 4 | 0 | 0 | 73 | 236 | 7 | 0 | 318 | 270 | 8 | 0 | 0 | 386 | 1 | 0 | 0 | 0 | 0 | 572 | 0 | 0 | 24 | 0 | 6 | 0 | 707 | 0 | 0 | 18 |
AB606249.1.1546 | 276 | 265 | 18 | 33 | 177 | 318 | 231 | 99 | 85 | 442 | 318 | 340 | 174 | 280 | 191 | 136 | 234 | 16 | 336 | 65 | 374 | 254 | 599 | 104 | 128 | 131 | 678 | 423 | 373 | 68 | 27 | 50 | 388 | 48 | 167 | 23 | 528 | 64 | 60 | 362 | 50 | 47 | 113 | 237 | 170 | 272 | 188 | 472 | 193 | 63 | 275 | 824 | 76 | 8 |
New.ReferenceOTU132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 332 | 0 | 621 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 138 | 0 | 114 | 0 | 0 | 0 | 0 | 0 | 0 | 761 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 136 | 0 | 0 | 0 | 1 | 0 | 266 | 0 | 0 | 0 | 0 | 0 |
New.ReferenceOTU704 | 0 | 0 | 0 | 1 | 350 | 0 | 254 | 0 | 0 | 444 | 0 | 11 | 0 | 33 | 0 | 132 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 78 | 0 | 0 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CDZJ01005172.1679.3161 | 0 | 11 | 34 | 0 | 0 | 0 | 42 | 0 | 8 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 5 | 136 | 0 | 0 | 2 | 0 | 38 | 11 | 10 | 33 | 0 | 9 | 8 | 230 | 262 | 0 | 16 | 24 | 34 | 0 | 0 | 384 | 329 | 0 | 389 | 149 | 0 | 17 | 469 | 172 | 0 | 321 | 258 | 1 | 780 | 486 | 0 | 80 |
AB606338.1.1472 | 5 | 0 | 197 | 0 | 5 | 0 | 12 | 0 | 81 | 0 | 24 | 0 | 1 | 17 | 0 | 38 | 22 | 4 | 0 | 0 | 1 | 0 | 1 | 21 | 3 | 134 | 5 | 51 | 0 | 0 | 71 | 47 | 0 | 0 | 313 | 0 | 0 | 70 | 267 | 0 | 730 | 0 | 2 | 1 | 166 | 0 | 72 | 162 | 12 | 82 | 0 | 43 | 22 | 104 |
EF406549.1.1479 | 1754 | 0 | 9 | 1 | 0 | 0 | 4 | 0 | 12 | 0 | 19 | 1 | 238 | 1 | 0 | 4 | 58 | 2 | 5 | 998 | 0 | 5 | 2 | 0 | 17 | 25 | 3 | 2 | 692 | 3 | 1 | 325 | 1 | 44 | 0 | 20 | 4 | 9 | 60 | 14 | 0 | 0 | 14 | 4 | 239 | 3 | 1 | 26 | 0 | 10 | 3 | 0 | 33 | 19 |
AJ308386.1.1462 | 8 | 3 | 0 | 23 | 7 | 3 | 0 | 0 | 0 | 0 | 10 | 0 | 82 | 1 | 0 | 1 | 8 | 4 | 0 | 14 | 0 | 0 | 1 | 0 | 16 | 12 | 0 | 65 | 1123 | 0 | 11 | 0 | 0 | 1 | 11 | 1 | 0 | 6 | 0 | 0 | 0 | 0 | 7 | 226 | 2 | 1 | 1 | 1 | 0 | 2 | 1 | 0 | 52 | 1 |
AB606393.1.1460 | 75 | 15 | 8 | 2 | 0 | 0 | 0 | 1 | 0 | 1 | 7 | 0 | 566 | 0 | 0 | 0 | 57 | 0 | 0 | 6 | 1 | 0 | 0 | 0 | 89 | 3 | 0 | 76 | 0 | 0 | 1 | 0 | 0 | 0 | 20 | 3 | 0 | 6 | 0 | 0 | 0 | 14 | 50 | 1 | 1 | 64 | 0 | 1 | 0 | 1 | 0 | 0 | 29 | 2 |
AB702909.1.1496 | 233 | 2 | 1 | 1096 | 58 | 1275 | 615 | 961 | 0 | 261 | 0 | 456 | 55 | 368 | 293 | 247 | 0 | 1 | 548 | 308 | 0 | 388 | 41 | 2331 | 0 | 0 | 112 | 0 | 1222 | 241 | 0 | 4 | 7 | 39 | 1 | 0 | 44 | 1 | 0 | 0 | 0 | 0 | 1 | 144 | 0 | 0 | 364 | 2 | 0 | 0 | 75 | 0 | 0 | 0 |
EU791043.1.1531 | 138 | 48 | 29 | 541 | 6 | 80 | 12 | 109 | 70 | 576 | 172 | 42 | 47 | 10 | 669 | 6 | 128 | 83 | 26 | 178 | 212 | 29 | 50 | 11 | 47 | 51 | 11 | 9 | 26 | 165 | 27 | 661 | 48 | 22 | 12 | 69 | 191 | 19 | 39 | 130 | 31 | 108 | 19 | 118 | 158 | 50 | 41 | 6 | 121 | 85 | 52 | 98 | 362 | 45 |
EU790984.1.1546 | 489 | 103 | 100 | 2029 | 19 | 287 | 28 | 417 | 245 | 1361 | 517 | 146 | 156 | 32 | 2505 | 19 | 436 | 167 | 78 | 357 | 679 | 115 | 181 | 25 | 121 | 132 | 26 | 49 | 101 | 450 | 87 | 2014 | 168 | 128 | 63 | 197 | 717 | 57 | 123 | 430 | 55 | 384 | 69 | 399 | 501 | 110 | 133 | 23 | 537 | 221 | 224 | 254 | 1372 | 111 |
AATF01001055.137.1680 | 187 | 46 | 27 | 667 | 6 | 110 | 17 | 133 | 76 | 575 | 208 | 46 | 61 | 13 | 814 | 11 | 156 | 77 | 21 | 209 | 311 | 49 | 60 | 13 | 49 | 76 | 16 | 23 | 18 | 221 | 45 | 778 | 48 | 49 | 18 | 64 | 244 | 23 | 45 | 120 | 53 | 112 | 32 | 142 | 198 | 49 | 43 | 6 | 185 | 103 | 87 | 122 | 529 | 57 |
LG042641.312212.313771 | 236 | 0 | 653 | 326 | 11 | 275 | 102 | 968 | 575 | 79 | 179 | 409 | 181 | 42 | 96 | 265 | 236 | 949 | 148 | 461 | 124 | 872 | 48 | 259 | 191 | 0 | 1 | 176 | 158 | 471 | 61 | 5 | 434 | 116 | 0 | 235 | 0 | 0 | 0 | 1 | 2 | 0 | 411 | 2 | 84 | 34 | 5 | 27 | 19 | 0 | 1 | 11 | 0 | 385 |
AB559728.1.1569 | 2 | 159 | 626 | 123 | 40 | 85 | 38 | 479 | 261 | 1 | 161 | 233 | 53 | 41 | 2 | 135 | 177 | 400 | 83 | 224 | 100 | 367 | 29 | 95 | 84 | 21 | 1 | 97 | 66 | 39 | 159 | 3 | 165 | 28 | 83 | 100 | 0 | 118 | 1 | 7 | 2 | 0 | 241 | 0 | 8 | 1 | 4 | 30 | 4 | 0 | 1 | 3 | 0 | 44 |
AB727348.1.1509 | 153 | 0 | 0 | 98 | 23 | 347 | 13 | 1422 | 1573 | 0 | 406 | 45 | 13 | 27 | 26 | 32 | 1076 | 87 | 59 | 32 | 120 | 93 | 12 | 25 | 17 | 1 | 2 | 0 | 372 | 295 | 1 | 15 | 29 | 108 | 1 | 0 | 408 | 3 | 0 | 2 | 0 | 0 | 451 | 3 | 15 | 0 | 7 | 0 | 430 | 0 | 230 | 0 | 2 | 1344 |
U07573.1.1470 | 22 | 0 | 0 | 385 | 12 | 78 | 48 | 0 | 8 | 80 | 90 | 170 | 122 | 8 | 11 | 29 | 24 | 0 | 36 | 41 | 79 | 150 | 38 | 70 | 0 | 0 | 481 | 1 | 69 | 8 | 0 | 7 | 10 | 33 | 1 | 12 | 12 | 0 | 0 | 90 | 0 | 0 | 30 | 45 | 53 | 0 | 53 | 0 | 23 | 120 | 12 | 0 | 87 | 17 |
CCPS01000022.154.1916 | 7 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 514 | 0 | 0 | 8 | 0 | 1 | 0 | 0 | 0 | 6 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 8 | 0 | 0 | 0 | 1 | 1123 | 5 | 0 | 1 | 34 | 0 | 5 | 6 | 142 | 0 | 248 | 713 | 31 | 37 | 25 | 1 | 5 | 2 |
AB606354.1.1519 | 96 | 321 | 161 | 115 | 692 | 260 | 98 | 295 | 62 | 26 | 544 | 26 | 492 | 317 | 71 | 79 | 196 | 160 | 100 | 107 | 495 | 956 | 341 | 191 | 603 | 161 | 726 | 880 | 269 | 78 | 91 | 22 | 172 | 164 | 683 | 50 | 129 | 34 | 22 | 286 | 83 | 103 | 681 | 20 | 139 | 469 | 37 | 746 | 105 | 674 | 106 | 475 | 59 | 1322 |
AYGZ01000001.327.1863 | 48 | 44 | 34 | 0 | 0 | 2 | 39 | 3 | 0 | 0 | 94 | 1 | 653 | 0 | 16 | 1 | 209 | 29 | 8 | 59 | 228 | 1293 | 37 | 159 | 177 | 59 | 0 | 1182 | 0 | 1 | 10 | 4 | 30 | 5 | 161 | 4 | 31 | 9 | 220 | 50 | 90 | 111 | 17 | 0 | 40 | 400 | 0 | 133 | 0 | 70 | 18 | 1741 | 81 | 759 |
DQ777900.1.1512 | 61 | 87 | 134 | 8 | 298 | 262 | 148 | 128 | 81 | 10 | 67 | 0 | 9 | 218 | 52 | 197 | 308 | 36 | 113 | 58 | 44 | 90 | 104 | 76 | 88 | 172 | 255 | 75 | 74 | 203 | 68 | 4 | 44 | 84 | 71 | 73 | 10 | 150 | 43 | 125 | 29 | 638 | 310 | 79 | 31 | 70 | 18 | 70 | 15 | 683 | 74 | 12 | 422 | 313 |
JX198592.1.1491 | 0 | 156 | 237 | 0 | 9 | 183 | 91 | 1496 | 0 | 27 | 0 | 56 | 0 | 40 | 92 | 257 | 1 | 8 | 10 | 0 | 39 | 210 | 22 | 440 | 7 | 9 | 15 | 1 | 0 | 125 | 116 | 0 | 0 | 0 | 26 | 0 | 49 | 22 | 10 | 0 | 11 | 0 | 0 | 0 | 7 | 0 | 51 | 18 | 0 | 0 | 0 | 0 | 0 | 27 |
EF097505.1.1302 | 78 | 1 | 13 | 854 | 7 | 54 | 16 | 280 | 237 | 16 | 0 | 18 | 277 | 55 | 43 | 14 | 0 | 109 | 48 | 594 | 1 | 114 | 0 | 48 | 55 | 1 | 6 | 2 | 33 | 1 | 8 | 124 | 1 | 10 | 1 | 4 | 10 | 2 | 2 | 9 | 0 | 61 | 1 | 4 | 19 | 13 | 41 | 0 | 314 | 14 | 19 | 2 | 2 | 119 |
AWFQ01000007.543.2090 | 62 | 1504 | 977 | 961 | 162 | 766 | 311 | 791 | 1905 | 399 | 0 | 683 | 3 | 649 | 640 | 758 | 2 | 6 | 672 | 39 | 164 | 332 | 303 | 299 | 2 | 539 | 73 | 0 | 42 | 1162 | 893 | 24 | 7 | 145 | 473 | 229 | 206 | 2 | 9 | 455 | 174 | 8 | 0 | 60 | 178 | 11 | 478 | 63 | 407 | 0 | 520 | 101 | 0 | 18 |
CP007457.1550473.1552017 | 2 | 32 | 647 | 112 | 167 | 392 | 225 | 305 | 49 | 290 | 0 | 315 | 1 | 486 | 200 | 910 | 0 | 0 | 444 | 0 | 24 | 132 | 6 | 295 | 0 | 533 | 38 | 1 | 0 | 121 | 653 | 1 | 0 | 64 | 405 | 86 | 57 | 2 | 6 | 197 | 319 | 5 | 0 | 0 | 0 | 8 | 276 | 29 | 3 | 1 | 278 | 14 | 0 | 1 |
AB627487.1.1525 | 30 | 114 | 210 | 59 | 0 | 41 | 13 | 0 | 0 | 0 | 160 | 10 | 11 | 10 | 1 | 6 | 156 | 127 | 18 | 39 | 3 | 2 | 3 | 37 | 6 | 110 | 7 | 1019 | 20 | 0 | 12 | 9 | 4 | 5 | 13 | 23 | 0 | 10 | 58 | 409 | 0 | 83 | 67 | 16 | 27 | 888 | 3 | 122 | 1 | 540 | 11 | 64 | 223 | 217 |
EU622689.1.1499 | 0 | 0 | 1 | 0 | 0 | 237 | 11 | 33 | 135 | 1 | 13 | 2 | 0 | 0 | 177 | 0 | 29 | 0 | 67 | 0 | 2 | 5 | 1 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 18 | 0 | 557 | 275 | 3 | 15 | 14 | 1 | 13 | 76 | 2 | 2 | 0 | 3 | 0 | 5 | 1 | 0 | 30 | 4 | 25 | 1 | 12 | 0 |
AB626908.1.1497 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 34 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 0 | 68 | 0 | 6 | 0 | 0 | 21 | 0 | 0 | 0 | 20 | 0 | 0 | 7 | 0 | 0 | 0 | 10 | 7 | 0 | 0 | 2 | 0 | 1 | 0 | 4 | 0 | 7 | 431 | 0 |
New.ReferenceOTU52 | 0 | 0 | 15 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 725 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22 | 0 | 0 | 0 | 134 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 245 | 0 | 0 | 0 | 1 | 15 | 0 | 3 | 1 | 0 | 17 | 0 |
KC163095.1.1526 | 0 | 0 | 23 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 1181 | 0 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 0 | 0 | 0 | 272 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 334 | 0 | 0 | 0 | 5 | 16 | 0 | 2 | 0 | 0 | 24 | 0 |
JQ084996.1.1499 | 0 | 12 | 15 | 61 | 48 | 15 | 97 | 14 | 91 | 6 | 264 | 20 | 256 | 59 | 88 | 34 | 134 | 7 | 84 | 0 | 384 | 556 | 116 | 53 | 47 | 19 | 112 | 2 | 32 | 3 | 49 | 33 | 53 | 12 | 125 | 49 | 58 | 25 | 0 | 240 | 0 | 8 | 283 | 12 | 46 | 262 | 22 | 96 | 11 | 14 | 0 | 17 | 7 | 0 |
JX198656.1.1515 | 23 | 0 | 8 | 29 | 0 | 907 | 187 | 13 | 24 | 42 | 45 | 17 | 419 | 101 | 25 | 5 | 4 | 1 | 642 | 18 | 154 | 243 | 12 | 28 | 815 | 2 | 12 | 5 | 136 | 2 | 4 | 226 | 90 | 14 | 5 | 7 | 471 | 0 | 38 | 57 | 2 | 0 | 48 | 21 | 90 | 17 | 68 | 10 | 55 | 24 | 18 | 25 | 45 | 4 |
JQ085018.1.1515 | 94 | 24 | 19 | 2 | 11 | 78 | 36 | 219 | 14 | 66 | 35 | 99 | 144 | 63 | 47 | 168 | 14 | 76 | 87 | 42 | 931 | 231 | 289 | 128 | 57 | 43 | 18 | 329 | 159 | 11 | 15 | 23 | 122 | 156 | 10 | 20 | 99 | 3 | 40 | 56 | 8 | 5 | 34 | 130 | 16 | 8 | 42 | 40 | 46 | 11 | 128 | 310 | 162 | 23 |
AB627586.1.1525 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 197 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 7 | 0 | 0 | 0 | 2 | 0 | 80 | 2 | 0 | 1625 | 0 | 55 | 4 | 0 | 1 | 0 | 2 | 0 | 0 |
AB622818.1.1552 | 0 | 41 | 6 | 204 | 40 | 339 | 4 | 47 | 37 | 4 | 51 | 15 | 36 | 23 | 125 | 3 | 3 | 4 | 17 | 0 | 74 | 531 | 120 | 0 | 33 | 146 | 9 | 191 | 12 | 141 | 26 | 26 | 4 | 14 | 33 | 2 | 102 | 11 | 97 | 4 | 35 | 25 | 7 | 14 | 61 | 64 | 79 | 39 | 54 | 5 | 50 | 210 | 7 | 11 |
HM123880.1.1494 | 1 | 0 | 5 | 1296 | 0 | 115 | 225 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 45 | 0 | 255 | 0 | 0 | 0 | 0 | 28 | 68 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 10 | 15 | 58 | 0 | 3 | 1 | 51 | 0 | 0 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 12 | 0 | 12 | 0 |
HM124103.1.1494 | 0 | 0 | 3 | 439 | 0 | 43 | 77 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 19 | 0 | 101 | 0 | 0 | 0 | 0 | 16 | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 14 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
CP015403.1369456.1371009 | 0 | 28 | 32 | 2 | 1 | 941 | 11 | 428 | 432 | 0 | 13 | 0 | 0 | 0 | 377 | 0 | 3 | 0 | 9 | 0 | 9 | 180 | 14 | 26 | 0 | 3 | 0 | 1 | 446 | 75 | 23 | 0 | 0 | 43 | 1 | 6 | 78 | 0 | 2 | 6 | 8 | 8 | 8 | 185 | 0 | 2 | 0 | 3 | 135 | 4 | 19 | 17 | 15 | 0 |
CDYJ01026408.72.1593 | 169 | 579 | 1446 | 1726 | 0 | 26 | 0 | 40 | 239 | 1 | 58 | 1 | 252 | 0 | 25 | 0 | 145 | 423 | 1 | 995 | 3 | 16 | 0 | 0 | 86 | 99 | 1 | 36 | 0 | 0 | 466 | 111 | 0 | 0 | 360 | 151 | 8 | 46 | 53 | 523 | 136 | 30 | 145 | 1 | 127 | 26 | 0 | 45 | 95 | 51 | 0 | 110 | 158 | 130 |
EU791028.1.1512 | 0 | 3 | 0 | 0 | 140 | 0 | 978 | 0 | 0 | 123 | 0 | 258 | 0 | 610 | 0 | 796 | 0 | 2 | 704 | 1 | 133 | 0 | 29 | 1305 | 0 | 0 | 261 | 0 | 0 | 143 | 0 | 0 | 47 | 357 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 160 | 0 | 0 | 0 | 200 | 1 | 0 | 0 |
EU791198.1.1518 | 0 | 0 | 0 | 0 | 40 | 0 | 312 | 0 | 0 | 41 | 0 | 79 | 0 | 182 | 0 | 300 | 0 | 0 | 200 | 0 | 50 | 0 | 9 | 509 | 0 | 0 | 81 | 0 | 0 | 53 | 0 | 0 | 5 | 95 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 55 | 0 | 0 | 0 | 47 | 0 | 0 | 0 |
JQ085082.1.1487 | 472 | 178 | 52 | 21 | 35 | 0 | 48 | 0 | 2 | 7 | 108 | 42 | 193 | 32 | 1 | 42 | 239 | 561 | 1 | 554 | 14 | 0 | 3 | 2 | 554 | 417 | 17 | 2 | 0 | 2 | 117 | 2449 | 0 | 0 | 75 | 217 | 0 | 944 | 1416 | 71 | 309 | 482 | 188 | 0 | 743 | 237 | 287 | 75 | 0 | 266 | 0 | 17 | 88 | 820 |
JQ083727.1.1489 | 1286 | 387 | 51 | 149 | 1570 | 473 | 627 | 376 | 859 | 34 | 1159 | 27 | 1765 | 1214 | 531 | 793 | 130 | 25 | 787 | 1214 | 837 | 39 | 85 | 302 | 347 | 141 | 536 | 518 | 650 | 519 | 95 | 434 | 742 | 2926 | 358 | 388 | 21 | 211 | 68 | 39 | 8 | 487 | 745 | 1312 | 193 | 30 | 36 | 69 | 82 | 212 | 14 | 35 | 1795 | 135 |
EF603126.1.1475 | 273 | 78 | 231 | 48 | 0 | 4 | 0 | 0 | 23 | 0 | 258 | 0 | 181 | 0 | 0 | 0 | 338 | 25 | 6 | 186 | 0 | 36 | 0 | 0 | 165 | 129 | 1 | 89 | 1 | 0 | 127 | 45 | 1 | 5 | 404 | 167 | 2 | 62 | 27 | 21 | 16 | 117 | 316 | 0 | 40 | 92 | 0 | 54 | 6 | 58 | 1 | 4 | 612 | 57 |
AB702766.1.1491 | 785 | 187 | 21 | 3 | 2 | 0 | 157 | 2 | 81 | 0 | 276 | 2 | 96 | 1 | 5 | 0 | 117 | 260 | 0 | 77 | 168 | 1 | 146 | 132 | 24 | 287 | 1 | 114 | 23 | 475 | 547 | 2150 | 0 | 0 | 389 | 132 | 17 | 415 | 784 | 428 | 502 | 361 | 69 | 274 | 355 | 421 | 0 | 212 | 19 | 315 | 0 | 409 | 236 | 552 |
EF603419.1.1478 | 0 | 45 | 615 | 1 | 62 | 58 | 1 | 44 | 55 | 70 | 232 | 132 | 0 | 212 | 95 | 164 | 192 | 1 | 67 | 0 | 217 | 43 | 81 | 1 | 0 | 510 | 208 | 230 | 51 | 51 | 292 | 1 | 13 | 114 | 353 | 429 | 127 | 86 | 131 | 120 | 92 | 25 | 358 | 205 | 0 | 79 | 114 | 148 | 67 | 152 | 91 | 97 | 900 | 0 |
DQ815760.1.1447 | 413 | 176 | 110 | 52 | 95 | 55 | 86 | 125 | 106 | 123 | 225 | 114 | 52 | 86 | 223 | 122 | 135 | 332 | 86 | 242 | 142 | 85 | 420 | 89 | 434 | 190 | 74 | 156 | 109 | 263 | 100 | 261 | 24 | 56 | 78 | 311 | 166 | 155 | 94 | 217 | 135 | 357 | 286 | 99 | 531 | 212 | 259 | 270 | 403 | 175 | 145 | 258 | 135 | 212 |
EU791171.1.1508 | 214 | 913 | 0 | 534 | 156 | 564 | 323 | 770 | 603 | 60 | 0 | 17 | 183 | 279 | 215 | 180 | 0 | 2 | 471 | 266 | 266 | 705 | 191 | 448 | 0 | 0 | 213 | 0 | 343 | 569 | 2 | 141 | 100 | 250 | 0 | 0 | 51 | 1 | 0 | 0 | 1 | 1291 | 1 | 199 | 0 | 299 | 41 | 0 | 59 | 1 | 89 | 1 | 1 | 1 |
JQ084893.1.1488 | 0 | 56 | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 104 | 0 | 0 | 0 | 0 | 0 | 256 | 0 | 77 | 0 | 0 | 0 | 0 | 0 | 0 | 327 | 0 | 128 | 46 | 0 | 199 | 0 | 237 | 94 | 43 | 19 | 0 | 123 | 203 | 24 | 140 | 164 | 42 | 257 | 0 | 175 | 0 | 111 | 0 | 89 | 452 | 264 | 36 | 0 |
EU791086.1.1496 | 93 | 1870 | 1317 | 710 | 320 | 866 | 468 | 824 | 483 | 144 | 110 | 82 | 744 | 421 | 482 | 456 | 471 | 1735 | 952 | 617 | 341 | 699 | 75 | 435 | 1413 | 1738 | 533 | 1421 | 452 | 283 | 972 | 134 | 220 | 427 | 1042 | 104 | 59 | 400 | 422 | 101 | 441 | 264 | 19 | 22 | 304 | 20 | 30 | 28 | 1 | 6 | 16 | 8 | 27 | 12 |
EF603719.1.1492 | 202 | 418 | 301 | 897 | 877 | 1486 | 1050 | 1371 | 765 | 355 | 77 | 174 | 1637 | 1146 | 781 | 1357 | 780 | 156 | 1653 | 2500 | 892 | 1099 | 122 | 1268 | 101 | 439 | 1414 | 205 | 676 | 702 | 197 | 289 | 347 | 709 | 213 | 18 | 90 | 79 | 87 | 19 | 151 | 46 | 34 | 36 | 28 | 6 | 34 | 4 | 0 | 1 | 20 | 6 | 6 | 2 |
HM123899.1.1495 | 0 | 122 | 0 | 0 | 141 | 406 | 342 | 318 | 926 | 552 | 0 | 567 | 0 | 419 | 512 | 348 | 0 | 2 | 502 | 1 | 321 | 211 | 419 | 331 | 0 | 1 | 301 | 102 | 315 | 181 | 0 | 0 | 1070 | 131 | 1 | 0 | 469 | 0 | 0 | 1 | 0 | 0 | 0 | 389 | 0 | 0 | 488 | 0 | 682 | 0 | 472 | 228 | 0 | 0 |
EF406773.1.1501 | 109 | 58 | 98 | 11 | 4 | 0 | 1 | 0 | 15 | 16 | 97 | 39 | 20 | 6 | 0 | 4 | 132 | 150 | 0 | 58 | 0 | 1 | 0 | 0 | 164 | 141 | 13 | 101 | 0 | 0 | 104 | 50 | 1 | 2 | 84 | 239 | 13 | 120 | 110 | 163 | 113 | 170 | 217 | 0 | 458 | 142 | 25 | 198 | 123 | 312 | 11 | 42 | 143 | 113 |
EU791052.1.1511 | 320 | 259 | 266 | 753 | 228 | 275 | 242 | 148 | 310 | 201 | 111 | 167 | 243 | 646 | 231 | 456 | 507 | 49 | 451 | 231 | 151 | 252 | 190 | 214 | 376 | 436 | 595 | 286 | 156 | 307 | 133 | 241 | 999 | 201 | 220 | 1081 | 102 | 26 | 167 | 432 | 30 | 888 | 21 | 272 | 106 | 157 | 60 | 117 | 18 | 17 | 4 | 61 | 280 | 34 |
JN012682.1.1467 | 127 | 0 | 0 | 8 | 413 | 164 | 306 | 254 | 634 | 381 | 16 | 278 | 14 | 693 | 231 | 699 | 8 | 0 | 269 | 12 | 221 | 163 | 491 | 512 | 22 | 0 | 353 | 483 | 192 | 1017 | 0 | 36 | 317 | 83 | 0 | 48 | 265 | 0 | 0 | 31 | 0 | 1 | 17 | 182 | 254 | 0 | 384 | 0 | 369 | 1 | 452 | 98 | 0 | 4 |
AGZO01000001.452.1966 | 751 | 37 | 2 | 10 | 5 | 13 | 85 | 41 | 30 | 25 | 10 | 38 | 248 | 26 | 153 | 10 | 38 | 97 | 31 | 446 | 39 | 14 | 112 | 53 | 193 | 6 | 2 | 22 | 13 | 89 | 20 | 1982 | 13 | 8 | 3 | 58 | 339 | 0 | 14 | 68 | 75 | 47 | 1 | 3 | 2141 | 61 | 109 | 198 | 9 | 142 | 31 | 483 | 5 | 3517 |
JQ083904.1.1489 | 0 | 155 | 138 | 0 | 55 | 0 | 116 | 0 | 0 | 174 | 114 | 125 | 1 | 60 | 0 | 40 | 138 | 1 | 68 | 0 | 73 | 0 | 140 | 131 | 0 | 129 | 60 | 74 | 236 | 248 | 178 | 0 | 240 | 58 | 87 | 200 | 0 | 317 | 468 | 243 | 1163 | 266 | 300 | 638 | 0 | 706 | 231 | 331 | 3 | 294 | 149 | 134 | 232 | 0 |
AB606312.1.1491 | 1 | 812 | 733 | 2 | 181 | 0 | 715 | 0 | 1 | 872 | 687 | 813 | 0 | 273 | 1 | 206 | 913 | 3 | 419 | 3 | 308 | 0 | 862 | 540 | 1 | 547 | 242 | 435 | 1711 | 1215 | 1115 | 0 | 1636 | 364 | 481 | 1074 | 0 | 2066 | 3118 | 1467 | 835 | 2004 | 1469 | 3724 | 0 | 2872 | 1534 | 2231 | 3 | 1361 | 1016 | 673 | 1497 | 2 |
CP015402.2294917.2296466 | 145 | 439 | 332 | 328 | 142 | 393 | 296 | 293 | 844 | 301 | 376 | 246 | 170 | 293 | 461 | 358 | 175 | 310 | 409 | 304 | 232 | 319 | 898 | 365 | 206 | 109 | 415 | 148 | 799 | 770 | 331 | 354 | 24 | 348 | 322 | 667 | 605 | 46 | 8 | 586 | 109 | 463 | 335 | 259 | 130 | 98 | 425 | 444 | 1289 | 272 | 509 | 167 | 228 | 176 |
EU791056.1.1502 | 124 | 25 | 119 | 239 | 36 | 108 | 46 | 41 | 72 | 61 | 54 | 66 | 154 | 119 | 18 | 73 | 35 | 86 | 68 | 227 | 116 | 50 | 42 | 37 | 32 | 36 | 120 | 54 | 86 | 54 | 111 | 90 | 7 | 15 | 46 | 907 | 40 | 3 | 8 | 105 | 11 | 84 | 238 | 49 | 38 | 19 | 45 | 63 | 49 | 48 | 56 | 10 | 242 | 56 |
EF604562.1.1497 | 112 | 37 | 116 | 207 | 8 | 24 | 5 | 8 | 53 | 16 | 103 | 6 | 114 | 17 | 4 | 22 | 59 | 82 | 39 | 212 | 50 | 8 | 26 | 12 | 35 | 87 | 27 | 71 | 17 | 33 | 168 | 95 | 2 | 7 | 39 | 1451 | 12 | 3 | 8 | 138 | 27 | 95 | 430 | 10 | 30 | 25 | 12 | 80 | 32 | 96 | 28 | 20 | 526 | 37 |
AB606317.1.1500 | 686 | 134 | 150 | 129 | 24 | 86 | 88 | 119 | 126 | 48 | 219 | 67 | 63 | 117 | 67 | 70 | 193 | 884 | 71 | 202 | 75 | 130 | 168 | 109 | 810 | 63 | 44 | 115 | 184 | 91 | 295 | 611 | 20 | 52 | 244 | 882 | 274 | 78 | 163 | 782 | 278 | 475 | 248 | 132 | 1295 | 723 | 199 | 1414 | 270 | 2500 | 292 | 800 | 198 | 1927 |
EU451397.1.1414 | 0 | 0 | 106 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 1 | 0 | 20 | 0 | 0 | 620 | 0 | 0 | 2 | 9 | 1 | 2 | 209 | 204 | 0 | 0 | 0 | 0 | 445 | 1 | 1 | 0 | 199 | 0 | 17 | 965 | 2229 | 0 | 540 | 0 | 0 | 0 | 232 | 0 | 0 | 117 | 0 | 0 | 0 | 0 | 0 | 1065 |
AB606322.1.1499 | 0 | 0 | 0 | 0 | 90 | 92 | 281 | 659 | 506 | 54 | 172 | 7 | 0 | 367 | 146 | 317 | 11 | 0 | 204 | 0 | 455 | 780 | 30 | 127 | 0 | 20 | 210 | 0 | 509 | 58 | 0 | 1 | 608 | 306 | 335 | 496 | 0 | 122 | 218 | 32 | 0 | 1 | 524 | 337 | 0 | 0 | 68 | 0 | 170 | 75 | 149 | 0 | 790 | 0 |
New.ReferenceOTU559 | 0 | 0 | 0 | 0 | 53 | 46 | 126 | 315 | 629 | 30 | 225 | 3 | 0 | 149 | 81 | 113 | 4 | 0 | 69 | 1 | 440 | 387 | 40 | 66 | 0 | 20 | 82 | 0 | 228 | 71 | 0 | 0 | 222 | 119 | 127 | 6 | 1 | 70 | 89 | 1 | 0 | 0 | 597 | 175 | 0 | 0 | 42 | 0 | 160 | 0 | 59 | 1 | 21 | 0 |
EU791133.1.1509 | 131 | 241 | 148 | 305 | 7 | 298 | 106 | 147 | 98 | 5 | 88 | 2 | 406 | 41 | 26 | 10 | 128 | 265 | 124 | 600 | 142 | 165 | 5 | 113 | 243 | 193 | 26 | 87 | 166 | 42 | 207 | 145 | 35 | 32 | 68 | 759 | 67 | 14 | 0 | 255 | 19 | 193 | 207 | 58 | 50 | 28 | 67 | 51 | 91 | 331 | 19 | 56 | 428 | 46 |
EU791170.1.1521 | 400 | 897 | 555 | 1259 | 27 | 927 | 366 | 526 | 299 | 12 | 309 | 10 | 1333 | 141 | 98 | 23 | 330 | 759 | 430 | 1758 | 412 | 609 | 20 | 314 | 763 | 524 | 95 | 329 | 580 | 131 | 646 | 502 | 117 | 105 | 230 | 2839 | 220 | 23 | 4 | 797 | 37 | 756 | 639 | 245 | 170 | 107 | 209 | 142 | 335 | 924 | 49 | 171 | 1518 | 137 |
EF406604.1.1522 | 75 | 991 | 625 | 4 | 0 | 2 | 1 | 0 | 79 | 0 | 324 | 10 | 1 | 1 | 0 | 0 | 177 | 480 | 1 | 8 | 54 | 1 | 57 | 2 | 58 | 784 | 0 | 38 | 5 | 321 | 690 | 64 | 0 | 0 | 956 | 3715 | 0 | 281 | 63 | 1577 | 137 | 1075 | 46 | 16 | 25 | 1026 | 2 | 280 | 86 | 171 | 0 | 187 | 137 | 238 |
EF603122.1.1484 | 104 | 320 | 414 | 213 | 37 | 179 | 163 | 192 | 106 | 92 | 391 | 99 | 117 | 156 | 177 | 89 | 170 | 63 | 245 | 259 | 197 | 210 | 205 | 72 | 34 | 80 | 183 | 53 | 168 | 196 | 301 | 123 | 30 | 107 | 341 | 963 | 275 | 108 | 80 | 458 | 42 | 211 | 374 | 119 | 96 | 217 | 93 | 193 | 93 | 442 | 237 | 180 | 128 | 42 |
EU791037.1.1514 | 0 | 0 | 221 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 137 | 595 | 0 | 2 | 9 | 0 | 0 | 0 | 267 | 116 | 0 | 111 | 0 | 0 | 263 | 0 | 0 | 0 | 37 | 4 | 0 | 36 | 42 | 269 | 29 | 0 | 2 | 1 | 93 | 0 | 0 | 114 | 0 | 60 | 1 | 121 | 0 | 116 |
EF406671.1.1517 | 0 | 0 | 189 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 121 | 641 | 1 | 0 | 8 | 0 | 0 | 4 | 269 | 105 | 0 | 80 | 0 | 0 | 215 | 0 | 0 | 0 | 38 | 1 | 0 | 30 | 30 | 233 | 39 | 0 | 2 | 0 | 75 | 0 | 0 | 65 | 0 | 52 | 0 | 86 | 1 | 149 |
EU791186.1.1495 | 2 | 81 | 296 | 0 | 4 | 0 | 22 | 0 | 3 | 22 | 22 | 23 | 0 | 10 | 0 | 19 | 231 | 2 | 42 | 0 | 2 | 1 | 0 | 25 | 0 | 82 | 9 | 106 | 5 | 5 | 453 | 1 | 0 | 91 | 172 | 374 | 0 | 164 | 199 | 299 | 83 | 87 | 0 | 57 | 0 | 94 | 26 | 167 | 0 | 180 | 50 | 59 | 2 | 2 |
JQ084057.1.1501 | 223 | 239 | 937 | 20 | 18 | 108 | 68 | 114 | 47 | 67 | 58 | 64 | 36 | 32 | 0 | 50 | 696 | 677 | 121 | 82 | 310 | 78 | 268 | 128 | 336 | 288 | 39 | 346 | 33 | 783 | 1530 | 182 | 4 | 279 | 577 | 1170 | 117 | 599 | 660 | 1076 | 441 | 294 | 3 | 202 | 281 | 345 | 76 | 469 | 7 | 623 | 123 | 161 | 1 | 467 |
EF406453.1.1508 | 204 | 41 | 67 | 123 | 34 | 66 | 56 | 95 | 182 | 91 | 118 | 86 | 109 | 87 | 115 | 73 | 54 | 388 | 179 | 191 | 52 | 89 | 127 | 102 | 271 | 28 | 139 | 42 | 118 | 254 | 59 | 267 | 94 | 76 | 54 | 275 | 136 | 49 | 24 | 229 | 31 | 198 | 60 | 198 | 212 | 86 | 73 | 71 | 173 | 219 | 273 | 71 | 53 | 451 |
New.ReferenceOTU495 | 0 | 0 | 96 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 44 | 0 | 0 | 0 | 0 | 426 | 1 | 0 | 0 | 1193 | 0 | 0 | 650 | 183 | 0 | 177 | 0 | 0 | 0 | 0 | 0 | 0 | 179 | 0 | 0 | 0 | 0 | 0 | 0 |
EU791120.1.1513 | 56 | 206 | 121 | 173 | 12 | 271 | 91 | 138 | 84 | 5 | 101 | 6 | 220 | 35 | 20 | 3 | 83 | 126 | 101 | 308 | 131 | 189 | 4 | 89 | 142 | 111 | 25 | 58 | 130 | 37 | 142 | 92 | 37 | 27 | 58 | 489 | 45 | 6 | 1 | 155 | 9 | 132 | 199 | 52 | 21 | 20 | 52 | 32 | 88 | 182 | 10 | 29 | 255 | 36 |
EF406763.1.1510 | 1777 | 11 | 682 | 381 | 22 | 68 | 48 | 157 | 201 | 45 | 1604 | 54 | 1228 | 74 | 20 | 33 | 984 | 1829 | 278 | 1142 | 15 | 489 | 447 | 49 | 2456 | 645 | 74 | 1 | 464 | 100 | 157 | 982 | 6 | 448 | 728 | 3340 | 181 | 49 | 161 | 178 | 48 | 169 | 1710 | 295 | 373 | 121 | 36 | 240 | 57 | 1225 | 596 | 0 | 1064 | 1400 |
EU791051.1.1505 | 807 | 110 | 87 | 45 | 0 | 0 | 0 | 1 | 2 | 1 | 134 | 1 | 47 | 0 | 0 | 2 | 142 | 418 | 0 | 253 | 1 | 0 | 0 | 0 | 248 | 99 | 0 | 114 | 97 | 0 | 71 | 24 | 0 | 41 | 73 | 908 | 0 | 302 | 293 | 566 | 439 | 426 | 227 | 291 | 3115 | 330 | 0 | 543 | 1 | 933 | 37 | 446 | 364 | 1072 |
EU791168.1.1511 | 32 | 29 | 82 | 597 | 36 | 208 | 91 | 306 | 21 | 64 | 144 | 58 | 155 | 117 | 143 | 111 | 69 | 539 | 142 | 403 | 88 | 233 | 104 | 128 | 362 | 73 | 185 | 25 | 132 | 441 | 56 | 21 | 14 | 102 | 39 | 436 | 189 | 3 | 1 | 14 | 0 | 82 | 411 | 274 | 112 | 24 | 106 | 4 | 63 | 186 | 165 | 7 | 605 | 164 |
EF406783.1.1508 | 100 | 96 | 213 | 1631 | 94 | 582 | 223 | 851 | 34 | 149 | 439 | 127 | 510 | 268 | 388 | 289 | 170 | 1533 | 288 | 1419 | 206 | 743 | 244 | 299 | 1077 | 239 | 512 | 107 | 298 | 1142 | 153 | 68 | 28 | 252 | 109 | 1202 | 538 | 9 | 4 | 41 | 8 | 252 | 1565 | 720 | 330 | 60 | 197 | 9 | 123 | 468 | 417 | 11 | 1811 | 622 |
EU791091.1.1520 | 32 | 20 | 36 | 482 | 9 | 125 | 69 | 158 | 17 | 35 | 89 | 61 | 98 | 46 | 81 | 38 | 61 | 201 | 85 | 126 | 38 | 155 | 83 | 38 | 255 | 23 | 98 | 33 | 100 | 189 | 29 | 14 | 6 | 83 | 26 | 303 | 152 | 6 | 2 | 5 | 1 | 64 | 219 | 172 | 108 | 12 | 87 | 8 | 35 | 78 | 107 | 2 | 434 | 88 |
AB702764.1.1495 | 4 | 1286 | 3166 | 1 | 910 | 1 | 1840 | 4 | 5 | 251 | 1802 | 88 | 4 | 334 | 3 | 317 | 2564 | 3 | 1051 | 8 | 5 | 6 | 2 | 915 | 1 | 2853 | 3816 | 628 | 862 | 1 | 1861 | 1 | 35 | 3311 | 1511 | 361 | 0 | 529 | 3 | 4073 | 2311 | 2174 | 2008 | 988 | 2 | 427 | 1464 | 3365 | 1 | 2707 | 954 | 2911 | 2341 | 0 |
EU622719.1.1482 | 2 | 9 | 23 | 0 | 8 | 0 | 173 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 18 | 8 | 61 | 2 | 2 | 0 | 0 | 0 | 1 | 543 | 4 | 1550 | 0 | 75 | 107 | 0 | 411 | 63 | 7 | 1 | 167 | 0 | 0 | 1967 | 805 | 0 | 1154 | 876 | 0 | 2829 | 0 | 530 | 1 | 437 | 1 | 0 | 1 | 2509 | 0 | 0 |
New.ReferenceOTU235 | 10 | 0 | 0 | 1 | 74 | 1 | 17 | 4 | 4 | 55 | 0 | 2 | 6 | 7 | 108 | 31 | 0 | 0 | 21 | 0 | 0 | 1 | 0 | 8 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 517 | 70 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 14 | 0 | 0 | 0 | 0 | 0 |
New.ReferenceOTU172 | 114 | 1 | 0 | 1 | 434 | 3 | 167 | 36 | 23 | 280 | 0 | 58 | 36 | 23 | 827 | 188 | 0 | 0 | 266 | 0 | 0 | 0 | 0 | 33 | 0 | 0 | 39 | 0 | 0 | 0 | 0 | 3768 | 486 | 0 | 0 | 0 | 11 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 347 | 1 | 100 | 0 | 0 | 0 | 0 | 0 |
MOYD01000062.205.1704 | 138 | 0 | 0 | 0 | 417 | 2 | 217 | 52 | 31 | 336 | 0 | 63 | 55 | 54 | 1152 | 258 | 0 | 0 | 386 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 53 | 0 | 0 | 0 | 0 | 4555 | 689 | 0 | 1 | 1 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 449 | 0 | 172 | 0 | 0 | 0 | 0 | 0 |
AB606394.1.1473 | 169 | 41 | 0 | 0 | 18 | 0 | 398 | 0 | 185 | 163 | 218 | 645 | 0 | 31 | 0 | 76 | 110 | 67 | 29 | 1 | 44 | 0 | 112 | 641 | 0 | 32 | 0 | 30 | 0 | 471 | 600 | 0 | 37 | 69 | 8 | 8 | 0 | 590 | 967 | 163 | 348 | 645 | 22 | 0 | 794 | 148 | 561 | 93 | 364 | 732 | 369 | 0 | 32 | 73 |
EU451957.1.1393 | 24 | 1 | 17 | 1 | 16 | 0 | 27 | 15 | 3 | 3 | 5 | 1 | 2 | 27 | 18 | 55 | 8 | 27 | 6 | 144 | 5 | 6 | 23 | 31 | 129 | 43 | 27 | 14 | 8 | 20 | 96 | 24 | 0 | 14 | 29 | 19 | 2 | 6 | 47 | 21 | 20 | 88 | 7 | 18 | 48 | 8 | 11 | 116 | 1 | 487 | 12 | 13 | 8 | 185 |
KM244845.1.1500 | 135 | 0 | 1 | 144 | 213 | 24 | 2 | 1999 | 1385 | 4 | 329 | 16 | 57 | 395 | 2 | 341 | 32 | 1982 | 1 | 929 | 824 | 1 | 168 | 30 | 280 | 0 | 7 | 0 | 756 | 1497 | 1 | 1 | 0 | 0 | 1 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 291 | 4 | 4 | 1 | 34 | 0 | 71 | 0 | 2 | 0 | 4 | 726 |
ASTF01000015.433637.435168 | 3 | 142 | 7 | 2 | 1 | 1474 | 785 | 494 | 1 | 53 | 10 | 104 | 29 | 4 | 810 | 1 | 118 | 1 | 59 | 5 | 19 | 38 | 565 | 128 | 28 | 26 | 2 | 44 | 16 | 251 | 1 | 7 | 320 | 271 | 46 | 0 | 355 | 6 | 8 | 8 | 0 | 2 | 11 | 12 | 0 | 5 | 19 | 5 | 3 | 9 | 104 | 219 | 6 | 1 |
EF406503.1.1505 | 0 | 78 | 3 | 8 | 0 | 3 | 0 | 0 | 0 | 6 | 544 | 0 | 0 | 0 | 0 | 0 | 70 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 3 | 3 | 1 | 19 | 2 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 665 | 1 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 284 | 0 | 1 |
AB606242.1.1511 | 0 | 0 | 0 | 0 | 2 | 176 | 0 | 1 | 28 | 0 | 0 | 0 | 0 | 3 | 15 | 0 | 260 | 559 | 2 | 0 | 79 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 13 | 0 | 98 | 0 | 0 | 0 | 0 | 121 |
AB627560.1.1532 | 81 | 1 | 179 | 114 | 8 | 39 | 3 | 27 | 19 | 26 | 153 | 22 | 1 | 16 | 127 | 14 | 100 | 40 | 7 | 144 | 5 | 8 | 24 | 2 | 558 | 2 | 4 | 87 | 128 | 1 | 54 | 2 | 13 | 5 | 125 | 206 | 340 | 0 | 0 | 178 | 0 | 30 | 92 | 149 | 88 | 1 | 26 | 461 | 212 | 47 | 13 | 77 | 19 | 6 |
FJ879725.1.1573 | 2 | 12 | 10 | 4 | 89 | 10 | 28 | 2 | 0 | 49 | 15 | 31 | 0 | 66 | 20 | 96 | 6 | 3 | 0 | 5 | 0 | 0 | 40 | 14 | 1 | 2 | 17 | 389 | 6 | 37 | 3 | 1 | 122 | 74 | 3 | 2 | 0 | 2 | 105 | 3 | 0 | 6 | 2 | 3 | 0 | 13 | 34 | 16 | 3 | 2 | 33 | 433 | 2 | 5 |
AB969479.1.1526 | 0 | 1 | 1 | 0 | 0 | 6 | 30 | 12 | 25 | 0 | 77 | 1 | 0 | 2 | 10 | 0 | 0 | 77 | 34 | 0 | 39 | 0 | 386 | 21 | 0 | 0 | 0 | 0 | 0 | 436 | 18 | 0 | 3 | 0 | 84 | 0 | 0 | 0 | 222 | 247 | 93 | 0 | 0 | 0 | 27 | 0 | 41 | 1 | 18 | 340 | 3 | 0 | 11 | 82 |
HM124124.1.1484 | 0 | 1 | 0 | 0 | 308 | 0 | 1209 | 1 | 11 | 0 | 0 | 6 | 1 | 1630 | 0 | 15 | 1 | 0 | 0 | 0 | 3611 | 0 | 2837 | 394 | 1 | 372 | 0 | 1 | 2 | 937 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1338 | 0 | 2 | 0 | 22 | 0 | 0 | 0 | 23 | 627 | 0 | 16 | 0 | 0 | 11 | 0 | 2 |
New.ReferenceOTU510 | 0 | 134 | 109 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 3 | 53 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 0 | 50 | 0 | 0 | 1 | 0 | 0 | 0 | 470 | 7 | 0 | 3 | 0 | 20 | 0 | 3 | 13 | 2 | 0 | 1 | 0 | 40 | 1 | 0 | 0 | 0 | 118 | 0 |
AB606270.1.1503 | 0 | 262 | 207 | 0 | 0 | 0 | 3 | 0 | 7 | 0 | 13 | 0 | 0 | 0 | 0 | 0 | 2 | 50 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 10 | 0 | 107 | 1 | 0 | 4 | 0 | 2 | 0 | 659 | 12 | 0 | 1 | 0 | 23 | 0 | 3 | 28 | 0 | 0 | 0 | 0 | 110 | 0 | 0 | 0 | 0 | 267 | 0 |
EF604541.1.1490 | 0 | 573 | 76 | 54 | 36 | 0 | 0 | 0 | 1 | 1 | 41 | 0 | 0 | 1 | 0 | 0 | 606 | 27 | 1 | 0 | 2 | 0 | 3 | 0 | 9 | 326 | 0 | 8 | 0 | 1 | 2 | 1 | 0 | 7 | 505 | 65 | 0 | 2 | 0 | 495 | 0 | 97 | 113 | 0 | 0 | 127 | 0 | 35 | 1 | 4 | 1 | 0 | 6 | 3 |
EU504917.1.1400 | 54 | 274 | 1 | 1 | 0 | 6 | 2 | 48 | 49 | 1 | 265 | 10 | 369 | 2 | 14 | 0 | 310 | 10 | 224 | 14 | 5 | 1 | 0 | 0 | 1 | 32 | 4 | 181 | 98 | 0 | 0 | 221 | 11 | 6 | 0 | 2 | 25 | 377 | 9 | 0 | 3 | 706 | 15 | 277 | 58 | 1239 | 1 | 4 | 156 | 0 | 37 | 79 | 0 | 40 |
FJ879561.1.1497 | 2 | 623 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 672 | 0 | 0 | 0 | 0 | 0 | 735 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 433 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 5 | 42 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 221 | 0 | 0 |
EF406575.1.1505 | 87 | 360 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 376 | 0 | 401 | 0 | 1 | 1 | 456 | 15 | 113 | 32 | 0 | 2 | 0 | 0 | 1 | 35 | 0 | 244 | 2 | 2 | 0 | 256 | 1 | 1 | 0 | 4 | 8 | 319 | 25 | 2 | 4 | 689 | 21 | 7 | 44 | 1239 | 0 | 2 | 7 | 0 | 2 | 156 | 0 | 49 |
AB702782.1.1499 | 0 | 4 | 5 | 0 | 5 | 0 | 29 | 14 | 13 | 0 | 5 | 0 | 0 | 2 | 17 | 0 | 13 | 99 | 0 | 0 | 0 | 0 | 0 | 0 | 525 | 0 | 0 | 366 | 1161 | 1 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 18 | 2 | 0 | 0 | 3 | 76 | 177 | 10 | 74 | 36 | 0 | 3 | 1 | 3 | 8 | 7 | 3 |
AB606327.1.1485 | 6 | 71 | 54 | 2 | 4805 | 1 | 4 | 25 | 193 | 0 | 506 | 7 | 0 | 35 | 4 | 22 | 543 | 2 | 3 | 1 | 185 | 7 | 662 | 5 | 2060 | 3 | 0 | 8 | 0 | 192 | 27 | 0 | 2 | 1478 | 374 | 44 | 4 | 0 | 0 | 116 | 0 | 950 | 1321 | 1 | 24 | 187 | 33 | 15 | 10 | 0 | 554 | 0 | 0 | 1 |
AB622844.1.1532 | 2 | 13 | 4 | 0 | 438 | 0 | 2 | 2 | 18 | 0 | 41 | 2 | 2 | 5 | 1 | 2 | 44 | 0 | 0 | 6 | 11 | 2 | 55 | 0 | 171 | 4 | 0 | 0 | 1 | 17 | 4 | 0 | 0 | 99 | 37 | 4 | 0 | 0 | 0 | 9 | 1 | 93 | 129 | 0 | 0 | 16 | 3 | 1 | 0 | 0 | 42 | 0 | 0 | 0 |
AB622841.1.1531 | 0 | 12 | 14 | 0 | 772 | 0 | 0 | 1 | 32 | 0 | 82 | 2 | 0 | 4 | 1 | 3 | 94 | 2 | 0 | 0 | 22 | 0 | 112 | 1 | 346 | 0 | 0 | 0 | 0 | 24 | 6 | 0 | 0 | 227 | 43 | 5 | 0 | 0 | 0 | 19 | 0 | 198 | 220 | 0 | 7 | 18 | 2 | 4 | 0 | 0 | 112 | 0 | 0 | 0 |
5 Taxonomic summary
5.1 Bar plots in phylum level
library(ggplot2)
geom.text.size = 6
theme.size = 8 #(14/5) * geom.text.size
# ps.ng.tax_most <- subset_taxa(ps.ng.tax_rel, Phylum %in%
# c('D_1__Actinobacteria', 'D_1__Bacteroidetes', 'D_1__Firmicutes',
# 'D_1__Proteobacteria', 'D_1__Verrucomicrobia', NA))
ps.ng.tax_most = phyloseq::filter_taxa(ps.ng.tax_rel, function(x) mean(x) > 0.001,
TRUE)
# CONSOLE(OPTIONAL): for sampleid in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
# 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
# 70 71 72 73; do echo
# 'otu_table(ps.ng.tax_most)[,${sampleid}]=otu_table(ps.ng.tax_most)[,${sampleid}]/sum(otu_table(ps.ng.tax_most)[,${sampleid}])'
# done OR
ps.ng.tax_most_ = transform_sample_counts(ps.ng.tax_most, function(x) x/sum(x))
# aes(color='Phylum', fill='Phylum') --> aes() ggplot(data=data, aes(x=Sample,
# y=Abundance, fill=Phylum))
plot_bar(ps.ng.tax_most_, fill = "Phylum") + geom_bar(aes(), stat = "identity", position = "stack") +
scale_fill_manual(values = c("darkblue", "darkgoldenrod1", "darkseagreen", "darkorchid",
"darkolivegreen1", "lightskyblue", "darkgreen", "deeppink", "khaki2", "firebrick",
"brown1", "darkorange1", "cyan1", "royalblue4", "darksalmon", "darkblue",
"royalblue4", "dodgerblue3", "steelblue1", "lightskyblue", "darkseagreen",
"darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", "brown1",
"darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = 5,
colour = "black")) + theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 2)) #6 instead of theme.size
Regroup together pre vs post stroke samples and normalize number of reads in each group using median sequencing depth.
ps.ng.tax_most_pre_post_stroke <- merge_samples(ps.ng.tax_most_, "pre_post_stroke")
ps.ng.tax_most_pre_post_stroke_ = transform_sample_counts(ps.ng.tax_most_pre_post_stroke,
function(x) x/sum(x))
# plot_bar(ps.ng.tax_most_SampleType_, fill = 'Phylum') +
# geom_bar(aes(color=Phylum, fill=Phylum), stat='identity', position='stack')
plot_bar(ps.ng.tax_most_pre_post_stroke_, fill = "Phylum") + geom_bar(aes(), stat = "identity",
position = "stack") + scale_fill_manual(values = c("darkblue", "darkgoldenrod1",
"darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue", "darkgreen",
"deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4",
"darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1", "lightskyblue",
"darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1",
"brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = theme.size,
colour = "black"))
Use color according to phylum. Do separate panels Stroke and Sex_age.
ps.ng.tax_most_copied <- data.table::copy(ps.ng.tax_most_)
# FITTING7: regulate the bar height if it has replicates
otu_table(ps.ng.tax_most_)[, c("1")] <- otu_table(ps.ng.tax_most_)[, c("1")]/6
otu_table(ps.ng.tax_most_)[, c("2")] <- otu_table(ps.ng.tax_most_)[, c("2")]/6
otu_table(ps.ng.tax_most_)[, c("4")] <- otu_table(ps.ng.tax_most_)[, c("4")]/6
otu_table(ps.ng.tax_most_)[, c("5")] <- otu_table(ps.ng.tax_most_)[, c("5")]/6
otu_table(ps.ng.tax_most_)[, c("6")] <- otu_table(ps.ng.tax_most_)[, c("6")]/6
otu_table(ps.ng.tax_most_)[, c("7")] <- otu_table(ps.ng.tax_most_)[, c("7")]/6
otu_table(ps.ng.tax_most_)[, c("8")] <- otu_table(ps.ng.tax_most_)[, c("8")]/7
otu_table(ps.ng.tax_most_)[, c("9")] <- otu_table(ps.ng.tax_most_)[, c("9")]/7
otu_table(ps.ng.tax_most_)[, c("10")] <- otu_table(ps.ng.tax_most_)[, c("10")]/7
otu_table(ps.ng.tax_most_)[, c("11")] <- otu_table(ps.ng.tax_most_)[, c("11")]/7
otu_table(ps.ng.tax_most_)[, c("12")] <- otu_table(ps.ng.tax_most_)[, c("12")]/7
otu_table(ps.ng.tax_most_)[, c("13")] <- otu_table(ps.ng.tax_most_)[, c("13")]/7
otu_table(ps.ng.tax_most_)[, c("14")] <- otu_table(ps.ng.tax_most_)[, c("14")]/7
otu_table(ps.ng.tax_most_)[, c("15")] <- otu_table(ps.ng.tax_most_)[, c("15")]/6
otu_table(ps.ng.tax_most_)[, c("16")] <- otu_table(ps.ng.tax_most_)[, c("16")]/6
otu_table(ps.ng.tax_most_)[, c("17")] <- otu_table(ps.ng.tax_most_)[, c("17")]/6
otu_table(ps.ng.tax_most_)[, c("18")] <- otu_table(ps.ng.tax_most_)[, c("18")]/6
otu_table(ps.ng.tax_most_)[, c("19")] <- otu_table(ps.ng.tax_most_)[, c("19")]/6
otu_table(ps.ng.tax_most_)[, c("20")] <- otu_table(ps.ng.tax_most_)[, c("20")]/6
otu_table(ps.ng.tax_most_)[, c("21")] <- otu_table(ps.ng.tax_most_)[, c("21")]/8
otu_table(ps.ng.tax_most_)[, c("22")] <- otu_table(ps.ng.tax_most_)[, c("22")]/8
otu_table(ps.ng.tax_most_)[, c("23")] <- otu_table(ps.ng.tax_most_)[, c("23")]/8
otu_table(ps.ng.tax_most_)[, c("24")] <- otu_table(ps.ng.tax_most_)[, c("24")]/8
otu_table(ps.ng.tax_most_)[, c("25")] <- otu_table(ps.ng.tax_most_)[, c("25")]/8
otu_table(ps.ng.tax_most_)[, c("26")] <- otu_table(ps.ng.tax_most_)[, c("26")]/8
otu_table(ps.ng.tax_most_)[, c("27")] <- otu_table(ps.ng.tax_most_)[, c("27")]/8
otu_table(ps.ng.tax_most_)[, c("28")] <- otu_table(ps.ng.tax_most_)[, c("28")]/8
otu_table(ps.ng.tax_most_)[, c("29")] <- otu_table(ps.ng.tax_most_)[, c("29")]/4
otu_table(ps.ng.tax_most_)[, c("30")] <- otu_table(ps.ng.tax_most_)[, c("30")]/4
otu_table(ps.ng.tax_most_)[, c("31")] <- otu_table(ps.ng.tax_most_)[, c("31")]/4
otu_table(ps.ng.tax_most_)[, c("32")] <- otu_table(ps.ng.tax_most_)[, c("32")]/4
otu_table(ps.ng.tax_most_)[, c("33")] <- otu_table(ps.ng.tax_most_)[, c("33")]/7
otu_table(ps.ng.tax_most_)[, c("34")] <- otu_table(ps.ng.tax_most_)[, c("34")]/7
otu_table(ps.ng.tax_most_)[, c("35")] <- otu_table(ps.ng.tax_most_)[, c("35")]/7
otu_table(ps.ng.tax_most_)[, c("36")] <- otu_table(ps.ng.tax_most_)[, c("36")]/7
otu_table(ps.ng.tax_most_)[, c("37")] <- otu_table(ps.ng.tax_most_)[, c("37")]/7
otu_table(ps.ng.tax_most_)[, c("38")] <- otu_table(ps.ng.tax_most_)[, c("38")]/7
otu_table(ps.ng.tax_most_)[, c("39")] <- otu_table(ps.ng.tax_most_)[, c("39")]/7
otu_table(ps.ng.tax_most_)[, c("40")] <- otu_table(ps.ng.tax_most_)[, c("40")]/7
otu_table(ps.ng.tax_most_)[, c("41")] <- otu_table(ps.ng.tax_most_)[, c("41")]/7
otu_table(ps.ng.tax_most_)[, c("42")] <- otu_table(ps.ng.tax_most_)[, c("42")]/7
otu_table(ps.ng.tax_most_)[, c("43")] <- otu_table(ps.ng.tax_most_)[, c("43")]/7
otu_table(ps.ng.tax_most_)[, c("44")] <- otu_table(ps.ng.tax_most_)[, c("44")]/7
otu_table(ps.ng.tax_most_)[, c("45")] <- otu_table(ps.ng.tax_most_)[, c("45")]/7
otu_table(ps.ng.tax_most_)[, c("46")] <- otu_table(ps.ng.tax_most_)[, c("46")]/7
otu_table(ps.ng.tax_most_)[, c("47")] <- otu_table(ps.ng.tax_most_)[, c("47")]/9
otu_table(ps.ng.tax_most_)[, c("48")] <- otu_table(ps.ng.tax_most_)[, c("48")]/9
otu_table(ps.ng.tax_most_)[, c("49")] <- otu_table(ps.ng.tax_most_)[, c("49")]/9
otu_table(ps.ng.tax_most_)[, c("50")] <- otu_table(ps.ng.tax_most_)[, c("50")]/9
otu_table(ps.ng.tax_most_)[, c("51")] <- otu_table(ps.ng.tax_most_)[, c("51")]/9
otu_table(ps.ng.tax_most_)[, c("52")] <- otu_table(ps.ng.tax_most_)[, c("52")]/9
otu_table(ps.ng.tax_most_)[, c("53")] <- otu_table(ps.ng.tax_most_)[, c("53")]/9
otu_table(ps.ng.tax_most_)[, c("54")] <- otu_table(ps.ng.tax_most_)[, c("54")]/9
otu_table(ps.ng.tax_most_)[, c("55")] <- otu_table(ps.ng.tax_most_)[, c("55")]/9
# plot_bar(ps.ng.tax_most_swab_, x='Phylum', fill = 'Phylum', facet_grid =
# Patient~RoundDay) + geom_bar(aes(color=Phylum, fill=Phylum), stat='identity',
# position='stack') + theme(axis.text = element_text(size = theme.size,
# colour='black'))
plot_bar(ps.ng.tax_most_, x = "Phylum", fill = "Phylum", facet_grid = pre_post_stroke ~
Sex_age) + geom_bar(aes(), stat = "identity", position = "stack") + scale_fill_manual(values = c("darkblue",
"darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue",
"darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1",
"royalblue4", "darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1",
"lightskyblue", "darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid",
"darkolivegreen1", "brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = 5,
colour = "black"), axis.text.x = element_blank(), axis.ticks = element_blank()) +
theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 2))
5.2 Bar plots in class level
plot_bar(ps.ng.tax_most_copied, fill = "Class") + geom_bar(aes(), stat = "identity",
position = "stack") + scale_fill_manual(values = c("darkblue", "darkgoldenrod1",
"darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue", "darkgreen",
"deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4",
"darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1", "lightskyblue",
"darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1",
"brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = 5,
colour = "black")) + theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 3))
Regroup together pre vs post stroke samples and normalize number of reads in each group using median sequencing depth.
plot_bar(ps.ng.tax_most_pre_post_stroke_, fill = "Class") + geom_bar(aes(), stat = "identity",
position = "stack") + scale_fill_manual(values = c("darkblue", "darkgoldenrod1",
"darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue", "darkgreen",
"deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4",
"darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1", "lightskyblue",
"darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1",
"brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = theme.size,
colour = "black"))
Use color according to class. Do separate panels Stroke and Sex_age.
#-- If existing replicates, to be processed as follows --
plot_bar(ps.ng.tax_most_, x = "Class", fill = "Class", facet_grid = pre_post_stroke ~
Sex_age) + geom_bar(aes(), stat = "identity", position = "stack") + scale_fill_manual(values = c("darkblue",
"darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue",
"darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1",
"royalblue4", "darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1",
"lightskyblue", "darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid",
"darkolivegreen1", "brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = 5,
colour = "black"), axis.text.x = element_blank(), axis.ticks = element_blank()) +
theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 3))
5.3 Bar plots in order level
plot_bar(ps.ng.tax_most_copied, fill = "Order") + geom_bar(aes(), stat = "identity",
position = "stack") + scale_fill_manual(values = c("darkblue", "darkgoldenrod1",
"darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue", "darkgreen",
"deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4",
"darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1", "lightskyblue",
"darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1",
"brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = 5,
colour = "black")) + theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 4))
Regroup together pre vs post stroke and normalize number of reads in each group using median sequencing depth.
plot_bar(ps.ng.tax_most_pre_post_stroke_, fill = "Order") + geom_bar(aes(), stat = "identity",
position = "stack") + scale_fill_manual(values = c("darkblue", "darkgoldenrod1",
"darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue", "darkgreen",
"deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4",
"darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1", "lightskyblue",
"darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1",
"brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = theme.size,
colour = "black")) + theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 4))
Use color according to order. Do separate panels Stroke and Sex_age.
# FITTING7: regulate the bar height if it has replicates
plot_bar(ps.ng.tax_most_, x = "Order", fill = "Order", facet_grid = pre_post_stroke ~
Sex_age) + geom_bar(aes(), stat = "identity", position = "stack") + scale_fill_manual(values = c("darkblue",
"darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue",
"darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1",
"royalblue4", "darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1",
"lightskyblue", "darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid",
"darkolivegreen1", "brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = 5,
colour = "black"), axis.text.x = element_blank(), axis.ticks = element_blank()) +
theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 4))
5.4 Bar plots in family level
plot_bar(ps.ng.tax_most_copied, fill = "Family") + geom_bar(aes(), stat = "identity",
position = "stack") + scale_fill_manual(values = c("#FF0000", "#000000", "#0000FF",
"#C0C0C0", "#FFFFFF", "#FFFF00", "#00FFFF", "#FFA500", "#00FF00", "#808080",
"#FF00FF", "#800080", "#FDD017", "#0000A0", "#3BB9FF", "#008000", "#800000",
"#ADD8E6", "#F778A1", "#800517", "#736F6E", "#F52887", "#C11B17", "#5CB3FF",
"#A52A2A", "#FF8040", "#2B60DE", "#736AFF", "#1589FF", "#98AFC7", "#8D38C9",
"#307D7E", "#F6358A", "#151B54", "#6D7B8D", "#FDEEF4", "#FF0080", "#F88017",
"#2554C7", "#FFF8C6", "#D4A017", "#306EFF", "#151B8D", "#9E7BFF", "#EAC117",
"#E0FFFF", "#15317E", "#6C2DC7", "#FBB917", "#FCDFFF", "#15317E", "#254117",
"#FAAFBE", "#357EC7")) + theme(axis.text = element_text(size = 5, colour = "black")) +
theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 8))
Regroup together pre vs post stroke samples and normalize number of reads in each group using median sequencing depth.
plot_bar(ps.ng.tax_most_pre_post_stroke_, fill = "Family") + geom_bar(aes(), stat = "identity",
position = "stack") + scale_fill_manual(values = c("#FF0000", "#000000", "#0000FF",
"#C0C0C0", "#FFFFFF", "#FFFF00", "#00FFFF", "#FFA500", "#00FF00", "#808080",
"#FF00FF", "#800080", "#FDD017", "#0000A0", "#3BB9FF", "#008000", "#800000",
"#ADD8E6", "#F778A1", "#800517", "#736F6E", "#F52887", "#C11B17", "#5CB3FF",
"#A52A2A", "#FF8040", "#2B60DE", "#736AFF", "#1589FF", "#98AFC7", "#8D38C9",
"#307D7E", "#F6358A", "#151B54", "#6D7B8D", "#FDEEF4", "#FF0080", "#F88017",
"#2554C7", "#FFF8C6", "#D4A017", "#306EFF", "#151B8D", "#9E7BFF", "#EAC117",
"#E0FFFF", "#15317E", "#6C2DC7", "#FBB917", "#FCDFFF", "#15317E", "#254117",
"#FAAFBE", "#357EC7")) + theme(axis.text = element_text(size = theme.size, colour = "black")) +
theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 8))
Use color according to family. Do separate panels Stroke and Sex_age.
#-- If existing replicates, to be processed as follows --
plot_bar(ps.ng.tax_most_, x = "Family", fill = "Family", facet_grid = pre_post_stroke ~
Sex_age) + geom_bar(aes(), stat = "identity", position = "stack") + scale_fill_manual(values = c("#FF0000",
"#000000", "#0000FF", "#C0C0C0", "#FFFFFF", "#FFFF00", "#00FFFF", "#FFA500",
"#00FF00", "#808080", "#FF00FF", "#800080", "#FDD017", "#0000A0", "#3BB9FF",
"#008000", "#800000", "#ADD8E6", "#F778A1", "#800517", "#736F6E", "#F52887",
"#C11B17", "#5CB3FF", "#A52A2A", "#FF8040", "#2B60DE", "#736AFF", "#1589FF",
"#98AFC7", "#8D38C9", "#307D7E", "#F6358A", "#151B54", "#6D7B8D", "#FDEEF4",
"#FF0080", "#F88017", "#2554C7", "#FFF8C6", "#D4A017", "#306EFF", "#151B8D",
"#9E7BFF", "#EAC117", "#E0FFFF", "#15317E", "#6C2DC7", "#FBB917", "#FCDFFF",
"#15317E", "#254117", "#FAAFBE", "#357EC7")) + theme(axis.text = element_text(size = 5,
colour = "black"), axis.text.x = element_blank(), axis.ticks = element_blank()) +
theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 8))
6 Alpha diversity
Plot Chao1 richness estimator, Observed OTUs, Shannon index, and Phylogenetic diversity. Regroup together samples from the same group.
hmp.div_qiime <- read.csv("adiv_even.txt", sep="\t")
colnames(hmp.div_qiime) <- c("sam_name", "chao1", "observed_otus", "shannon", "PD_whole_tree")
row.names(hmp.div_qiime) <- hmp.div_qiime$sam_name
div.df <- merge(hmp.div_qiime, hmp.meta, by = "sam_name")
div.df2 <- div.df[, c("Group", "chao1", "shannon", "observed_otus", "PD_whole_tree")]
colnames(div.df2) <- c("Group", "Chao-1", "Shannon", "OTU", "Phylogenetic Diversity")
#colnames(div.df2)
options(max.print=999999)
#27 H47 830.5000 5.008482 319 10.60177
#FITTING6: if occuring "Computation failed in `stat_signif()`:not enough 'y' observations"
#means: the patient H47 contains only one sample, it should be removed for the statistical p-values calculations.
#delete H47(1)
#div.df2 <- div.df2[-c(3), ]
#div.df2 <- div.df2[-c(55,54, 45,40,39,27,26,25,1), ]
knitr::kable(div.df2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
Group | Chao-1 | Shannon | OTU | Phylogenetic Diversity |
---|---|---|---|---|
Group1 | 6349.769 | 7.002665 | 2751 | 83.66721 |
Group1 | 7285.497 | 7.355100 | 2737 | 94.96087 |
Group1 | 5495.606 | 7.178491 | 2461 | 83.56788 |
Group1 | 6161.841 | 7.097847 | 2511 | 85.58772 |
Group1 | 5443.752 | 6.824459 | 2434 | 84.34122 |
Group1 | 4840.408 | 6.776871 | 2461 | 80.72348 |
Group2 | 7366.408 | 7.815119 | 3197 | 102.90263 |
Group2 | 6274.827 | 7.741948 | 2890 | 90.85852 |
Group2 | 5793.308 | 8.075933 | 2865 | 92.32601 |
Group2 | 5984.518 | 7.319433 | 2578 | 90.46149 |
Group2 | 5708.705 | 7.851736 | 2824 | 93.36881 |
Group2 | 6109.767 | 8.101662 | 2966 | 98.44462 |
Group2 | 6369.752 | 7.118622 | 2869 | 95.11685 |
Group3 | 6940.387 | 7.741135 | 3059 | 97.76165 |
Group3 | 6098.004 | 6.436854 | 2835 | 102.67316 |
Group3 | 6497.394 | 7.850194 | 2913 | 98.10649 |
Group3 | 5469.070 | 6.699081 | 2449 | 82.04387 |
Group3 | 6645.847 | 7.682096 | 2841 | 92.82798 |
Group3 | 6637.343 | 8.223364 | 3028 | 91.43127 |
Group4 | 6951.096 | 7.754592 | 3221 | 102.24768 |
Group4 | 6474.659 | 7.199445 | 2761 | 99.42394 |
Group4 | 6675.297 | 7.917291 | 3047 | 96.83298 |
Group4 | 6247.904 | 7.486238 | 2935 | 92.08430 |
Group4 | 6284.602 | 7.937227 | 3073 | 104.16131 |
Group4 | 5071.120 | 7.496080 | 2578 | 81.15671 |
Group4 | 7180.224 | 8.128899 | 3195 | 105.48484 |
Group4 | 6861.665 | 8.148061 | 3102 | 90.74225 |
Group5 | 6395.912 | 6.601610 | 2610 | 90.63905 |
Group5 | 6268.760 | 6.807457 | 2664 | 90.49587 |
Group5 | 5597.646 | 6.368809 | 2493 | 84.34328 |
Group5 | 6628.257 | 7.639552 | 2972 | 96.22455 |
Group6 | 6300.821 | 7.445990 | 2832 | 99.36449 |
Group6 | 6444.541 | 7.421449 | 2884 | 98.71807 |
Group6 | 6947.157 | 7.091146 | 2687 | 100.62399 |
Group6 | 5410.097 | 6.866969 | 2584 | 90.80504 |
Group6 | 5953.121 | 6.937662 | 2599 | 95.33328 |
Group6 | 6462.002 | 7.897205 | 3000 | 95.28576 |
Group6 | 6937.500 | 7.726382 | 2805 | 96.43301 |
Group7 | 6512.715 | 7.595379 | 2754 | 85.83723 |
Group7 | 5963.597 | 7.406097 | 2772 | 92.08358 |
Group7 | 6399.684 | 6.788279 | 2636 | 88.25698 |
Group7 | 4851.865 | 6.066666 | 2044 | 78.10996 |
Group7 | 5618.788 | 6.274673 | 2345 | 89.33655 |
Group7 | 5485.123 | 7.549293 | 2527 | 81.88175 |
Group7 | 6661.582 | 7.828921 | 2987 | 99.76522 |
Group8 | 5147.719 | 7.330667 | 2421 | 88.32128 |
Group8 | 7077.365 | 7.990243 | 3085 | 96.26960 |
Group8 | 7017.728 | 7.668941 | 3149 | 107.96902 |
Group8 | 6990.919 | 8.152600 | 3202 | 105.21691 |
Group8 | 6067.818 | 7.284291 | 2705 | 97.74334 |
Group8 | 7205.626 | 7.463663 | 3060 | 106.55682 |
Group8 | 7038.728 | 7.969380 | 3170 | 104.27469 |
Group8 | 5821.239 | 7.778258 | 2727 | 85.05796 |
Group8 | 4878.500 | 7.002098 | 2147 | 67.58582 |
#https://uc-r.github.io/t_test
#We can perform the test with t.test and transform our data and we can also perform the nonparametric test with the wilcox.test function.
stat.test.Shannon <- compare_means(
Shannon ~ Group, data = div.df2,
method = "t.test"
)
knitr::kable(stat.test.Shannon) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
.y. | group1 | group2 | p | p.adj | p.format | p.signif | method |
---|---|---|---|---|---|---|---|
Shannon | Group1 | Group2 | 0.0022194 | 0.060 | 0.00222 | ** | T-test |
Shannon | Group1 | Group3 | 0.2335726 | 1.000 | 0.23357 | ns | T-test |
Shannon | Group1 | Group4 | 0.0004373 | 0.012 | 0.00044 | *** | T-test |
Shannon | Group1 | Group5 | 0.5625942 | 1.000 | 0.56259 | ns | T-test |
Shannon | Group1 | Group6 | 0.1132840 | 1.000 | 0.11328 | ns | T-test |
Shannon | Group1 | Group7 | 0.9072871 | 1.000 | 0.90729 | ns | T-test |
Shannon | Group1 | Group8 | 0.0023776 | 0.062 | 0.00238 | ** | T-test |
Shannon | Group2 | Group3 | 0.4111307 | 1.000 | 0.41113 | ns | T-test |
Shannon | Group2 | Group4 | 0.8285950 | 1.000 | 0.82859 | ns | T-test |
Shannon | Group2 | Group5 | 0.0425835 | 1.000 | 0.04258 |
|
T-test |
Shannon | Group2 | Group6 | 0.0895027 | 1.000 | 0.08950 | ns | T-test |
Shannon | Group2 | Group7 | 0.0583335 | 1.000 | 0.05833 | ns | T-test |
Shannon | Group2 | Group8 | 0.6382240 | 1.000 | 0.63822 | ns | T-test |
Shannon | Group3 | Group4 | 0.3405858 | 1.000 | 0.34059 | ns | T-test |
Shannon | Group3 | Group5 | 0.1831506 | 1.000 | 0.18315 | ns | T-test |
Shannon | Group3 | Group6 | 0.7707906 | 1.000 | 0.77079 | ns | T-test |
Shannon | Group3 | Group7 | 0.3689790 | 1.000 | 0.36898 | ns | T-test |
Shannon | Group3 | Group8 | 0.5695443 | 1.000 | 0.56954 | ns | T-test |
Shannon | Group4 | Group5 | 0.0379492 | 0.950 | 0.03795 |
|
T-test |
Shannon | Group4 | Group6 | 0.0490209 | 1.000 | 0.04902 |
|
T-test |
Shannon | Group4 | Group7 | 0.0436902 | 1.000 | 0.04369 |
|
T-test |
Shannon | Group4 | Group8 | 0.4628546 | 1.000 | 0.46285 | ns | T-test |
Shannon | Group5 | Group6 | 0.1845088 | 1.000 | 0.18451 | ns | T-test |
Shannon | Group5 | Group7 | 0.5837050 | 1.000 | 0.58370 | ns | T-test |
Shannon | Group5 | Group8 | 0.0595454 | 1.000 | 0.05955 | ns | T-test |
Shannon | Group6 | Group7 | 0.3969530 | 1.000 | 0.39695 | ns | T-test |
Shannon | Group6 | Group8 | 0.1683518 | 1.000 | 0.16835 | ns | T-test |
Shannon | Group7 | Group8 | 0.0917359 | 1.000 | 0.09174 | ns | T-test |
div_df_melt <- reshape2::melt(div.df2)
#head(div_df_melt)
#https://plot.ly/r/box-plots/#horizontal-boxplot
#http://www.sthda.com/english/wiki/print.php?id=177
#https://rpkgs.datanovia.com/ggpubr/reference/as_ggplot.html
#http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/82-ggplot2-easy-way-to-change-graphical-parameters/
#https://plot.ly/r/box-plots/#horizontal-boxplot
#library("gridExtra")
#par(mfrow=c(4,1))
p <- ggboxplot(div_df_melt, x = "Group", y = "value",
facet.by = "variable",
scales = "free",
width = 0.5,
fill = "gray", legend= "right")
#ggpar(p, xlab = FALSE, ylab = FALSE)
lev <- levels(factor(div_df_melt$Group)) # get the variables
#FITTING6: delete H47(1) in lev
#lev <- lev[-c(3)]
# make a pairwise list that we want to compare.
#my_stat_compare_means
#https://stackoverflow.com/questions/47839988/indicating-significance-with-ggplot2-in-a-boxplot-with-multiple-groups
L.pairs <- combn(seq_along(lev), 2, simplify = FALSE, FUN = function(i) lev[i]) #%>% filter(p.signif != "ns")
my_stat_compare_means <- function (mapping = NULL, data = NULL, method = NULL, paired = FALSE,
method.args = list(), ref.group = NULL, comparisons = NULL,
hide.ns = FALSE, label.sep = ", ", label = NULL, label.x.npc = "left",
label.y.npc = "top", label.x = NULL, label.y = NULL, tip.length = 0.03,
symnum.args = list(), geom = "text", position = "identity",
na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...)
{
if (!is.null(comparisons)) {
method.info <- ggpubr:::.method_info(method)
method <- method.info$method
method.args <- ggpubr:::.add_item(method.args, paired = paired)
if (method == "wilcox.test")
method.args$exact <- FALSE
pms <- list(...)
size <- ifelse(is.null(pms$size), 0.3, pms$size)
color <- ifelse(is.null(pms$color), "black", pms$color)
map_signif_level <- FALSE
if (is.null(label))
label <- "p.format"
if (ggpubr:::.is_p.signif_in_mapping(mapping) | (label %in% "p.signif")) {
if (ggpubr:::.is_empty(symnum.args)) {
map_signif_level <- c(`****` = 1e-04, `***` = 0.001,
`**` = 0.01, `*` = 0.05, ns = 1)
} else {
map_signif_level <- symnum.args
}
if (hide.ns)
names(map_signif_level)[5] <- " "
}
step_increase <- ifelse(is.null(label.y), 0.12, 0)
ggsignif::geom_signif(comparisons = comparisons, y_position = label.y,
test = method, test.args = method.args, step_increase = step_increase,
size = size, color = color, map_signif_level = map_signif_level,
tip_length = tip.length, data = data)
} else {
mapping <- ggpubr:::.update_mapping(mapping, label)
layer(stat = StatCompareMeans, data = data, mapping = mapping,
geom = geom, position = position, show.legend = show.legend,
inherit.aes = inherit.aes, params = list(label.x.npc = label.x.npc,
label.y.npc = label.y.npc, label.x = label.x,
label.y = label.y, label.sep = label.sep, method = method,
method.args = method.args, paired = paired, ref.group = ref.group,
symnum.args = symnum.args, hide.ns = hide.ns,
na.rm = na.rm, ...))
}
}
p2 <- p +
stat_compare_means(
method="t.test",
#comparisons = L.pairs, # L.pairs
comparisons = list(c("Group1", "Group2"), c("Group1", "Group3"), c("Group1", "Group4"), c("Group1", "Group6"), c("Group1", "Group8"), c("Group2", "Group5"),c("Group4", "Group5"),c("Group4", "Group6"),c("Group4", "Group7"),c("Group6", "Group7")),
label = "p.signif",
symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05, 1), symbols = c("****", "***", "**", "*", "ns")),
#symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05), symbols = c("****", "***", "**", "*")),
)
[1] FALSE
#stat_pvalue_manual
#print(p2)
#https://stackoverflow.com/questions/20500706/saving-multiple-ggplots-from-ls-into-one-and-separate-files-in-r
#FITTING3: mkdir figures
ggsave("./figures/alpha_diversity_Group.png", device="png", height = 10, width = 12)
ggsave("./figures/alpha_diversity_Group.svg", device="svg", height = 10, width = 12)
p3 <- p +
stat_compare_means(
method="t.test",
#comparisons = L.pairs, # L.pairs
comparisons = list(c("Group1", "Group2"), c("Group1", "Group4"), c("Group3", "Group4"), c("Group5", "Group6"),c("Group7", "Group8")),
label = "p.signif",
symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05, 1), symbols = c("****", "***", "**", "*", "ns")),
#symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05), symbols = c("****", "***", "**", "*")),
)
[1] FALSE
#stat_pvalue_manual
#print(p2)
#https://stackoverflow.com/questions/20500706/saving-multiple-ggplots-from-ls-into-one-and-separate-files-in-r
#FITTING3: mkdir figures
ggsave("./figures/alpha_diversity_Group2.png", device="png", height = 10, width = 12)
ggsave("./figures/alpha_diversity_Group2.svg", device="svg", height = 10, width = 12)
Alpha diversity by pre_post_stroke: the alpha diversity of the post stroke samples is significantly different from that of the pre stroke samples.
div.df2 <- div.df[, c("pre_post_stroke", "chao1", "shannon", "observed_otus", "PD_whole_tree")]
colnames(div.df2) <- c("pre_post_stroke", "Chao-1", "Shannon", "OTU", "Phylogenetic Diversity")
#colnames(div.df2)
options(max.print=999999)
#27 H47 830.5000 5.008482 319 10.60177
#FITTING6: if occuring "Computation failed in `stat_signif()`:not enough 'y' observations"
#means: the patient H47 contains only one sample, it should be removed for the statistical p-values calculations.
#delete H47(1)
#div.df2 <- div.df2[-c(3), ]
#div.df2 <- div.df2[-c(55,54, 45,40,39,27,26,25,1), ]
#knitr::kable(div.df2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
#https://uc-r.github.io/t_test
#We can perform the test with t.test and transform our data and we can also perform the nonparametric test with the wilcox.test function.
stat.test.Shannon <- compare_means(
Shannon ~ pre_post_stroke, data = div.df2,
method = "t.test"
)
knitr::kable(stat.test.Shannon) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
.y. | group1 | group2 | p | p.adj | p.format | p.signif | method |
---|---|---|---|---|---|---|---|
Shannon | post | pre | 0.0011532 | 0.0012 | 0.0012 | ** | T-test |
div_df_melt <- reshape2::melt(div.df2)
p <- ggboxplot(div_df_melt, x = "pre_post_stroke", y = "value",
facet.by = "variable",
scales = "free",
width = 0.5,
fill = "gray", legend= "right")
lev <- levels(factor(div_df_melt$pre_post_stroke))
L.pairs <- combn(seq_along(lev), 2, simplify = FALSE, FUN = function(i) lev[i])
my_stat_compare_means <- function (mapping = NULL, data = NULL, method = NULL, paired = FALSE,
method.args = list(), ref.group = NULL, comparisons = NULL,
hide.ns = FALSE, label.sep = ", ", label = NULL, label.x.npc = "left",
label.y.npc = "top", label.x = NULL, label.y = NULL, tip.length = 0.03,
symnum.args = list(), geom = "text", position = "identity",
na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...)
{
if (!is.null(comparisons)) {
method.info <- ggpubr:::.method_info(method)
method <- method.info$method
method.args <- ggpubr:::.add_item(method.args, paired = paired)
if (method == "wilcox.test")
method.args$exact <- FALSE
pms <- list(...)
size <- ifelse(is.null(pms$size), 0.3, pms$size)
color <- ifelse(is.null(pms$color), "black", pms$color)
map_signif_level <- FALSE
if (is.null(label))
label <- "p.format"
if (ggpubr:::.is_p.signif_in_mapping(mapping) | (label %in% "p.signif")) {
if (ggpubr:::.is_empty(symnum.args)) {
map_signif_level <- c(`****` = 1e-04, `***` = 0.001,
`**` = 0.01, `*` = 0.05, ns = 1)
} else {
map_signif_level <- symnum.args
}
if (hide.ns)
names(map_signif_level)[5] <- " "
}
step_increase <- ifelse(is.null(label.y), 0.12, 0)
ggsignif::geom_signif(comparisons = comparisons, y_position = label.y,
test = method, test.args = method.args, step_increase = step_increase,
size = size, color = color, map_signif_level = map_signif_level,
tip_length = tip.length, data = data)
} else {
mapping <- ggpubr:::.update_mapping(mapping, label)
layer(stat = StatCompareMeans, data = data, mapping = mapping,
geom = geom, position = position, show.legend = show.legend,
inherit.aes = inherit.aes, params = list(label.x.npc = label.x.npc,
label.y.npc = label.y.npc, label.x = label.x,
label.y = label.y, label.sep = label.sep, method = method,
method.args = method.args, paired = paired, ref.group = ref.group,
symnum.args = symnum.args, hide.ns = hide.ns,
na.rm = na.rm, ...))
}
}
p2 <- p + stat_compare_means(
method="t.test",
comparisons = L.pairs, # L.pairs
#CHANGE:
#comparisons = list(c("-", "21"), c("-", "28"), c("00", "07"), c("00", "21"), c("00", "28")),
#comparisons = list(c("-", "021"), c("-", "028"), c("000", "007"), c("000", "021"), c("000", "028")),
label = "p.signif",
symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05, 1), symbols = c("****", "***", "**", "*", "ns")),
hide.ns = TRUE
)
[1] FALSE
ggsave("./figures/alpha_diversity_pre_post_stroke.png", device="png", height = 10, width = 12)
ggsave("./figures/alpha_diversity_pre_post_stroke.svg", device="svg", height = 10, width = 12)
# send both png and svg files to Laura
- Group1: f.aged and post
- Group2: f.aged and pre
- Group3: f.young and post
- Group4: f.young and pre
- Group5: m.aged and post
- Group6: m.aged and pre
- Group7: m.young and post
- Group8: m.young and pre
Merge Group1 and Group5 as aged_post. Merge Group2 and Group6 as aged_pre. Merge Group3 and Group7 as young_post. Merge Group4 and Group8 as young_pre.
Then perform the statistical test between aged_post and aged_pre –> significant. the statistical test between young_post and young_pre –> not significant.
hmp.div_qiime <- read.csv("adiv_even.txt", sep="\t")
colnames(hmp.div_qiime) <- c("sam_name", "chao1", "observed_otus", "shannon", "PD_whole_tree")
row.names(hmp.div_qiime) <- hmp.div_qiime$sam_name
div.df <- merge(hmp.div_qiime, hmp.meta, by = "sam_name")
div.df2 <- div.df[, c("Group", "chao1", "shannon", "observed_otus", "PD_whole_tree")]
colnames(div.df2) <- c("Group", "Chao-1", "Shannon", "OTU", "Phylogenetic Diversity")
div.df2[div.df2 == "Group1"] <- "aged.post"
div.df2[div.df2 == "Group5"] <- "aged.post"
div.df2[div.df2 == "Group2"] <- "aged.pre"
div.df2[div.df2 == "Group6"] <- "aged.pre"
div.df2[div.df2 == "Group3"] <- "young.post"
div.df2[div.df2 == "Group7"] <- "young.post"
div.df2[div.df2 == "Group4"] <- "young.pre"
div.df2[div.df2 == "Group8"] <- "young.pre"
#colnames(div.df2)
options(max.print=999999)
#27 H47 830.5000 5.008482 319 10.60177
#FITTING6: if occuring "Computation failed in `stat_signif()`:not enough 'y' observations"
#means: the patient H47 contains only one sample, it should be removed for the statistical p-values calculations.
#delete H47(1)
#div.df2 <- div.df2[-c(3), ]
#div.df2 <- div.df2[-c(55,54, 45,40,39,27,26,25,1), ]
knitr::kable(div.df2) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
Group | Chao-1 | Shannon | OTU | Phylogenetic Diversity |
---|---|---|---|---|
aged.post | 6349.769 | 7.002665 | 2751 | 83.66721 |
aged.post | 7285.497 | 7.355100 | 2737 | 94.96087 |
aged.post | 5495.606 | 7.178491 | 2461 | 83.56788 |
aged.post | 6161.841 | 7.097847 | 2511 | 85.58772 |
aged.post | 5443.752 | 6.824459 | 2434 | 84.34122 |
aged.post | 4840.408 | 6.776871 | 2461 | 80.72348 |
aged.pre | 7366.408 | 7.815119 | 3197 | 102.90263 |
aged.pre | 6274.827 | 7.741948 | 2890 | 90.85852 |
aged.pre | 5793.308 | 8.075933 | 2865 | 92.32601 |
aged.pre | 5984.518 | 7.319433 | 2578 | 90.46149 |
aged.pre | 5708.705 | 7.851736 | 2824 | 93.36881 |
aged.pre | 6109.767 | 8.101662 | 2966 | 98.44462 |
aged.pre | 6369.752 | 7.118622 | 2869 | 95.11685 |
young.post | 6940.387 | 7.741135 | 3059 | 97.76165 |
young.post | 6098.004 | 6.436854 | 2835 | 102.67316 |
young.post | 6497.394 | 7.850194 | 2913 | 98.10649 |
young.post | 5469.070 | 6.699081 | 2449 | 82.04387 |
young.post | 6645.847 | 7.682096 | 2841 | 92.82798 |
young.post | 6637.343 | 8.223364 | 3028 | 91.43127 |
young.pre | 6951.096 | 7.754592 | 3221 | 102.24768 |
young.pre | 6474.659 | 7.199445 | 2761 | 99.42394 |
young.pre | 6675.297 | 7.917291 | 3047 | 96.83298 |
young.pre | 6247.904 | 7.486238 | 2935 | 92.08430 |
young.pre | 6284.602 | 7.937227 | 3073 | 104.16131 |
young.pre | 5071.120 | 7.496080 | 2578 | 81.15671 |
young.pre | 7180.224 | 8.128899 | 3195 | 105.48484 |
young.pre | 6861.665 | 8.148061 | 3102 | 90.74225 |
aged.post | 6395.912 | 6.601610 | 2610 | 90.63905 |
aged.post | 6268.760 | 6.807457 | 2664 | 90.49587 |
aged.post | 5597.646 | 6.368809 | 2493 | 84.34328 |
aged.post | 6628.257 | 7.639552 | 2972 | 96.22455 |
aged.pre | 6300.821 | 7.445990 | 2832 | 99.36449 |
aged.pre | 6444.541 | 7.421449 | 2884 | 98.71807 |
aged.pre | 6947.157 | 7.091146 | 2687 | 100.62399 |
aged.pre | 5410.097 | 6.866969 | 2584 | 90.80504 |
aged.pre | 5953.121 | 6.937662 | 2599 | 95.33328 |
aged.pre | 6462.002 | 7.897205 | 3000 | 95.28576 |
aged.pre | 6937.500 | 7.726382 | 2805 | 96.43301 |
young.post | 6512.715 | 7.595379 | 2754 | 85.83723 |
young.post | 5963.597 | 7.406097 | 2772 | 92.08358 |
young.post | 6399.684 | 6.788279 | 2636 | 88.25698 |
young.post | 4851.865 | 6.066666 | 2044 | 78.10996 |
young.post | 5618.788 | 6.274673 | 2345 | 89.33655 |
young.post | 5485.123 | 7.549293 | 2527 | 81.88175 |
young.post | 6661.582 | 7.828921 | 2987 | 99.76522 |
young.pre | 5147.719 | 7.330667 | 2421 | 88.32128 |
young.pre | 7077.365 | 7.990243 | 3085 | 96.26960 |
young.pre | 7017.728 | 7.668941 | 3149 | 107.96902 |
young.pre | 6990.919 | 8.152600 | 3202 | 105.21691 |
young.pre | 6067.818 | 7.284291 | 2705 | 97.74334 |
young.pre | 7205.626 | 7.463663 | 3060 | 106.55682 |
young.pre | 7038.728 | 7.969380 | 3170 | 104.27469 |
young.pre | 5821.239 | 7.778258 | 2727 | 85.05796 |
young.pre | 4878.500 | 7.002098 | 2147 | 67.58582 |
#https://uc-r.github.io/t_test
#We can perform the test with t.test and transform our data and we can also perform the nonparametric test with the wilcox.test function.
stat.test.Shannon <- compare_means(
Shannon ~ Group, data = div.df2,
method = "t.test"
)
knitr::kable(stat.test.Shannon) %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
.y. | group1 | group2 | p | p.adj | p.format | p.signif | method |
---|---|---|---|---|---|---|---|
Shannon | aged.post | aged.pre | 0.0021984 | 0.01100 | 0.0022 | ** | T-test |
Shannon | aged.post | young.post | 0.2366071 | 0.64000 | 0.2366 | ns | T-test |
Shannon | aged.post | young.pre | 0.0000953 | 0.00057 | 9.5e-05 | **** | T-test |
Shannon | aged.pre | young.post | 0.2122282 | 0.64000 | 0.2122 | ns | T-test |
Shannon | aged.pre | young.pre | 0.2685374 | 0.64000 | 0.2685 | ns | T-test |
Shannon | young.post | young.pre | 0.0502394 | 0.20000 | 0.0502 | ns | T-test |
div_df_melt <- reshape2::melt(div.df2)
#head(div_df_melt)
#https://plot.ly/r/box-plots/#horizontal-boxplot
#http://www.sthda.com/english/wiki/print.php?id=177
#https://rpkgs.datanovia.com/ggpubr/reference/as_ggplot.html
#http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/82-ggplot2-easy-way-to-change-graphical-parameters/
#https://plot.ly/r/box-plots/#horizontal-boxplot
#library("gridExtra")
#par(mfrow=c(4,1))
p <- ggboxplot(div_df_melt, x = "Group", y = "value",
facet.by = "variable",
scales = "free",
width = 0.5,
fill = "gray", legend= "right")
#ggpar(p, xlab = FALSE, ylab = FALSE)
lev <- levels(factor(div_df_melt$Group)) # get the variables
#FITTING6: delete H47(1) in lev
#lev <- lev[-c(3)]
# make a pairwise list that we want to compare.
#my_stat_compare_means
#https://stackoverflow.com/questions/47839988/indicating-significance-with-ggplot2-in-a-boxplot-with-multiple-groups
L.pairs <- combn(seq_along(lev), 2, simplify = FALSE, FUN = function(i) lev[i]) #%>% filter(p.signif != "ns")
my_stat_compare_means <- function (mapping = NULL, data = NULL, method = NULL, paired = FALSE,
method.args = list(), ref.group = NULL, comparisons = NULL,
hide.ns = FALSE, label.sep = ", ", label = NULL, label.x.npc = "left",
label.y.npc = "top", label.x = NULL, label.y = NULL, tip.length = 0.03,
symnum.args = list(), geom = "text", position = "identity",
na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...)
{
if (!is.null(comparisons)) {
method.info <- ggpubr:::.method_info(method)
method <- method.info$method
method.args <- ggpubr:::.add_item(method.args, paired = paired)
if (method == "wilcox.test")
method.args$exact <- FALSE
pms <- list(...)
size <- ifelse(is.null(pms$size), 0.3, pms$size)
color <- ifelse(is.null(pms$color), "black", pms$color)
map_signif_level <- FALSE
if (is.null(label))
label <- "p.format"
if (ggpubr:::.is_p.signif_in_mapping(mapping) | (label %in% "p.signif")) {
if (ggpubr:::.is_empty(symnum.args)) {
map_signif_level <- c(`****` = 1e-04, `***` = 0.001,
`**` = 0.01, `*` = 0.05, ns = 1)
} else {
map_signif_level <- symnum.args
}
if (hide.ns)
names(map_signif_level)[5] <- " "
}
step_increase <- ifelse(is.null(label.y), 0.12, 0)
ggsignif::geom_signif(comparisons = comparisons, y_position = label.y,
test = method, test.args = method.args, step_increase = step_increase,
size = size, color = color, map_signif_level = map_signif_level,
tip_length = tip.length, data = data)
} else {
mapping <- ggpubr:::.update_mapping(mapping, label)
layer(stat = StatCompareMeans, data = data, mapping = mapping,
geom = geom, position = position, show.legend = show.legend,
inherit.aes = inherit.aes, params = list(label.x.npc = label.x.npc,
label.y.npc = label.y.npc, label.x = label.x,
label.y = label.y, label.sep = label.sep, method = method,
method.args = method.args, paired = paired, ref.group = ref.group,
symnum.args = symnum.args, hide.ns = hide.ns,
na.rm = na.rm, ...))
}
}
p2 <- p +
stat_compare_means(
method="t.test",
#comparisons = L.pairs, # L.pairs
comparisons = list(c("aged.pre", "aged.post"), c("young.pre", "young.post"), c("young.pre", "aged.post")),
label = "p.signif",
symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05, 1), symbols = c("****", "***", "**", "*", "ns")),
#symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05), symbols = c("****", "***", "**", "*")),
)
[1] FALSE
#stat_pvalue_manual
#print(p2)
#https://stackoverflow.com/questions/20500706/saving-multiple-ggplots-from-ls-into-one-and-separate-files-in-r
#FITTING3: mkdir figures
ggsave("./figures/alpha_diversity_aged_young.png", device="png", height = 10, width = 12)
ggsave("./figures/alpha_diversity_aged_young.svg", device="svg", height = 10, width = 12)
7 Beta diversity
Do multivariate analysis based on unifrac distance and PCoA ordination.
# obtained beta diversity from distance matrices (DM) and PCoA plots (unifrac)
# https://forum.qiime2.org/t/tutorial-integrating-qiime2-and-r-for-data-visualization-and-analysis-using-qiime2r/4121?u=nicholas_bokulich
# https://www.rdocumentation.org/packages/qiimer/versions/0.9.4
# http://www.science.smith.edu/cmbs/wp-content/uploads/sites/36/2015/09/Tutorial-from-sample-to-analyzed-data-using-Qiime-for-analysis.pdf
# https://bioconductor.statistik.tu-dortmund.de/packages/3.8/bioc/manuals/phyloseq/man/phyloseq.pdf
# http://evomics.org/wp-content/uploads/2016/01/phyloseq-Lab-01-Answers.html#beta-diversity-distances
mp <- readRDS("./ps.ng.tax.rds")
mpra <- microbiome::transform(mp, "compositional")
# # Define taxa to keep. keepTaxa = prevdt[(Prevalence >= 10 & TotalCounts >
# 3), TaxaID] # Define new object with relative abundance mpra =
# transform_sample_counts(mp, function(x) x / sum(x)) # Filter this new object
# mpraf = prune_taxa(keepTaxa, mpra) # Calculate distances #
# distance(esophagus, 'uunifrac') # Unweighted UniFrac # distance(esophagus,
# 'wunifrac') # weighted UniFrac DistUF = distance(mpra, method = 'wunifrac')
# IMPORT QIIME DISTANCE MATRIX TODO: !!!!!!!!!!!!!!!!!!!!!!!!!! HOW to
# construct a phyloseq::distance object?
# https://joey711.github.io/phyloseq/distance.html
# disttb = as.matrix(DistUF) disttb[1:10,1:10] DistUF2 <- as.dist(disttb)
# https://stackoverflow.com/questions/17875733/how-to-convert-a-symmetric-matrix-into-dist-object
# https://stackoverflow.com/questions/25845220/how-to-read-a-matrix-from-text-file-in-r
d <- read.table("./bdiv_even42434/weighted_unifrac_dm.txt", header = TRUE, sep = "\t",
row.names = 1)
DistUF2 <- as.dist(d)
ordUF = ordinate(mpra, method = "PCoA", distance = DistUF2)
plot_scree(ordUF, "Scree Plot: Weighted UniFrac Multidimensional Scaling")
# plot_ordination(mpraf, ordUF, color = 'SampleType') + geom_point(mapping =
# aes(size = DaysSinceExperimentStart, shape = factor(Subject))) +
# ggtitle('PCoA: Unweigthed Unifrac')
unwt.unifrac <- plot_ordination(mpra, ordUF, color = "Group")
unwt.unifrac <- unwt.unifrac + ggtitle("Weighted UniFrac") + geom_point(size = 2)
# https://stackoverflow.com/questions/15282580/how-to-generate-a-number-of-most-distinctive-colors-in-r
# library(randomcoloR)
nb.cols <- 18
mycolors <- colorRampPalette(brewer.pal(8, "Set2"))(nb.cols)
# install.packages('Polychrome')
library(Polychrome)
# https://stackoverflow.com/questions/9563711/r-color-palettes-for-many-data-classes
P36 = createPalette(36, c("#ff0000", "#00ff00", "#0000ff"))
# https://www.nceas.ucsb.edu/sites/default/files/2020-04/colorPaletteCheatsheet.pdf
unwt.unifrac <- unwt.unifrac + theme_classic() + scale_color_brewer("Group", palette = "Paired") #Set3
# print(unwt.unifrac)
ggsave("./figures/beta_diversity1.png", device = "png", height = 6, width = 12)
d <- read.table("./bdiv_even42434/unweighted_unifrac_dm.txt", header = TRUE, sep = "\t",
row.names = 1)
DistUF2 <- as.dist(d)
# method=c('DCA', 'CCA', 'RDA', 'CAP', 'DPCoA', 'NMDS', 'MDS', 'PCoA')
ordUF = ordinate(mpra, method = "PCoA", distance = DistUF2)
plot_scree(ordUF, "Scree Plot: Unweighted UniFrac Multidimensional Scaling")
# plot_ordination(mpraf, ordUF, color = 'SampleType') + geom_point(mapping =
# aes(size = DaysSinceExperimentStart, shape = factor(Subject))) +
# ggtitle('PCoA: Unweigthed Unifrac')
unwt.unifrac <- plot_ordination(mpra, ordUF, color = "Group")
unwt.unifrac <- unwt.unifrac + ggtitle("Unweighted UniFrac") + geom_point(size = 2)
unwt.unifrac <- unwt.unifrac + theme_classic() + scale_color_brewer("Group", palette = "Paired") # #mycolors
# print(unwt.unifrac)
ggsave("./figures/beta_diversity4.png", device = "png", height = 6, width = 12)
# Bug: the PCI component ratio is not identical to the results of QIIME1.
8 Differential abundance analysis
Differential abundance analysis aims to find the differences in the abundance of each taxa between two groups of samples, assigning a significance value to each comparison.
8.1 Group1 vs Group2
library("DESeq2")
# ALTERNATIVE using ps.ng.tax_most_copied: ps.ng.tax (40594) vs.
# ps.ng.tax_most_copied (166)
ps.ng.tax_sel <- ps.ng.tax
otu_table(ps.ng.tax_sel) <- otu_table(ps.ng.tax)[, c("1", "2", "4", "5", "6", "7",
"8", "9", "10", "11", "12", "13", "14")]
diagdds = phyloseq_to_deseq2(ps.ng.tax_sel, ~Group)
diagdds$Group <- relevel(diagdds$Group, "Group2")
diagdds = DESeq(diagdds, test = "Wald", fitType = "parametric")
resultsNames(diagdds)
[1] "Intercept" "Group_Group1_vs_Group2"
res = results(diagdds, cooksCutoff = FALSE)
alpha = 0.05
sigtab = res[which(res$padj < alpha), ]
sigtab = cbind(as(sigtab, "data.frame"), as(tax_table(ps.ng.tax_sel)[rownames(sigtab),
], "matrix"))
sigtab <- sigtab[rownames(sigtab) %in% rownames(tax_table(ps.ng.tax_most_copied)),
]
kable(sigtab) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Domain | Phylum | Class | Order | Family | Genus | Species | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EF603872.1.1478 | 12.26963 | 21.812585 | 2.7930949 | 7.809468 | 0.00e+00 | 0.0000000 | D_0__Bacteria | D_1__Firmicutes | D_2__Clostridia | D_3__Clostridiales | D_4__Lachnospiraceae | D_5__Lachnospiraceae NK4A136 group | D_6__uncultured bacterium |
New.ReferenceOTU132 | 19.71680 | 21.942035 | 2.8326453 | 7.746129 | 0.00e+00 | 0.0000000 | D_0__Bacteria | D_1__Firmicutes | D_2__Clostridia | D_3__Clostridiales | D_4__Peptostreptococcaceae | D_5__Romboutsia | D_6__uncultured bacterium |
MPKA01000044.182665.184200 | 77.50853 | -3.630940 | 0.8749931 | -4.149679 | 3.33e-05 | 0.0299107 | D_0__Bacteria | D_1__Firmicutes | D_2__Erysipelotrichia | D_3__Erysipelotrichales | D_4__Erysipelotrichaceae | D_5__Dubosiella | D_6__Dubosiella newyorkensis |
CCPS01000022.154.1916 | 65.95551 | 8.490080 | 1.7546207 | 4.838698 | 1.30e-06 | 0.0015655 | D_0__Bacteria | D_1__Proteobacteria | D_2__Gammaproteobacteria | D_3__Enterobacteriales | D_4__Enterobacteriaceae | D_5__Escherichia-Shigella | NA |
EU622719.1.1482 | 205.38847 | 9.137709 | 1.9088938 | 4.786913 | 1.70e-06 | 0.0017389 | D_0__Bacteria | D_1__Cyanobacteria | D_2__Melainabacteria | D_3__Gastranaerophilales | D_4__uncultured bacterium | D_5__uncultured bacterium | D_6__uncultured bacterium |
# rownames(sigtab) %in% rownames(tax_table(ps.ng.tax_most_copied)) subv %in% v
# returns a vector TRUE FALSE is.element(subv, v) returns a vector TRUE FALSE
library("ggplot2")
theme_set(theme_bw())
scale_fill_discrete <- function(palname = "Set1", ...) {
scale_fill_brewer(palette = palname, ...)
}
x = tapply(sigtab$log2FoldChange, sigtab$Order, function(x) max(x))
x = sort(x)
sigtab$Order = factor(as.character(sigtab$Order), levels = names(x))
x = tapply(sigtab$log2FoldChange, sigtab$Family, function(x) max(x))
x = sort(x)
sigtab$Family = factor(as.character(sigtab$Family), levels = names(x))
ggplot(sigtab, aes(x = log2FoldChange, y = Family, color = Order)) + geom_point(aes(size = padj)) +
scale_size_continuous(name = "padj", range = c(8, 4)) + theme(axis.text.x = element_text(angle = -25,
hjust = 0, vjust = 0.5))
8.2 Group3 vs Group4
ps.ng.tax_sel <- ps.ng.tax
otu_table(ps.ng.tax_sel) <- otu_table(ps.ng.tax)[, c("15", "16", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28")]
diagdds = phyloseq_to_deseq2(ps.ng.tax_sel, ~Group)
diagdds$Group <- relevel(diagdds$Group, "Group4")
diagdds = DESeq(diagdds, test = "Wald", fitType = "parametric")
resultsNames(diagdds)
[1] "Intercept" "Group_Group3_vs_Group4"
res = results(diagdds, cooksCutoff = FALSE)
alpha = 0.05
sigtab = res[which(res$padj < alpha), ]
sigtab = cbind(as(sigtab, "data.frame"), as(tax_table(ps.ng.tax_sel)[rownames(sigtab),
], "matrix"))
sigtab <- sigtab[rownames(sigtab) %in% rownames(tax_table(ps.ng.tax_most_copied)),
]
kable(sigtab) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Domain | Phylum | Class | Order | Family | Genus | Species | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HK240365.1.1492 | 1533.42683 | 9.540979 | 1.713161 | 5.569224 | 0 | 8.7e-06 | D_0__Bacteria | D_1__Verrucomicrobia | D_2__Verrucomicrobiae | D_3__Verrucomicrobiales | D_4__Akkermansiaceae | D_5__Akkermansia | D_6__uncultured bacterium |
EU510524.1.1382 | 28.46869 | 23.318939 | 3.004054 | 7.762489 | 0 | 0.0e+00 | D_0__Bacteria | D_1__Firmicutes | D_2__Clostridia | D_3__Clostridiales | D_4__Ruminococcaceae | D_5__Ruminococcaceae UCG-014 | D_6__uncultured bacterium |
New.ReferenceOTU132 | 35.95017 | 23.643776 | 3.003872 | 7.871100 | 0 | 0.0e+00 | D_0__Bacteria | D_1__Firmicutes | D_2__Clostridia | D_3__Clostridiales | D_4__Peptostreptococcaceae | D_5__Romboutsia | D_6__uncultured bacterium |
New.ReferenceOTU495 | 23.53857 | 23.048897 | 2.518147 | 9.153117 | 0 | 0.0e+00 | Unassigned | NA | NA | NA | NA | NA | NA |
library("ggplot2")
theme_set(theme_bw())
scale_fill_discrete <- function(palname = "Set1", ...) {
scale_fill_brewer(palette = palname, ...)
}
x = tapply(sigtab$log2FoldChange, sigtab$Order, function(x) max(x))
x = sort(x)
sigtab$Order = factor(as.character(sigtab$Order), levels = names(x))
x = tapply(sigtab$log2FoldChange, sigtab$Family, function(x) max(x))
x = sort(x)
sigtab$Family = factor(as.character(sigtab$Family), levels = names(x))
ggplot(sigtab, aes(x = log2FoldChange, y = Family, color = Order)) + geom_point(aes(size = padj)) +
scale_size_continuous(name = "padj", range = c(8, 4)) + theme(axis.text.x = element_text(angle = -25,
hjust = 0, vjust = 0.5))
8.3 Group5 vs Group6
ps.ng.tax_sel <- ps.ng.tax
otu_table(ps.ng.tax_sel) <- otu_table(ps.ng.tax)[, c("29", "30", "31", "32", "33",
"34", "35", "36", "37", "38", "39")]
diagdds = phyloseq_to_deseq2(ps.ng.tax_sel, ~Group)
diagdds$Group <- relevel(diagdds$Group, "Group6")
diagdds = DESeq(diagdds, test = "Wald", fitType = "parametric")
resultsNames(diagdds)
[1] "Intercept" "Group_Group5_vs_Group6"
res = results(diagdds, cooksCutoff = FALSE)
alpha = 0.05
sigtab = res[which(res$padj < alpha), ]
sigtab = cbind(as(sigtab, "data.frame"), as(tax_table(ps.ng.tax_sel)[rownames(sigtab),
], "matrix"))
sigtab <- sigtab[rownames(sigtab) %in% rownames(tax_table(ps.ng.tax_most_copied)),
]
kable(sigtab) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj | Domain | Phylum | Class | Order | Family | Genus | Species | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCPS01000022.154.1916 | 72.4453 | 7.389872 | 1.6812744 | 4.395399 | 1.11e-05 | 0.0108856 | D_0__Bacteria | D_1__Proteobacteria | D_2__Gammaproteobacteria | D_3__Enterobacteriales | D_4__Enterobacteriaceae | D_5__Escherichia-Shigella | NA |
JQ083727.1.1489 | 530.9005 | -4.174814 | 0.9088159 | -4.593686 | 4.40e-06 | 0.0051448 | D_0__Bacteria | D_1__Bacteroidetes | D_2__Bacteroidia | D_3__Bacteroidales | D_4__Rikenellaceae | D_5__Alistipes | D_6__uncultured bacterium |
library("ggplot2")
theme_set(theme_bw())
scale_fill_discrete <- function(palname = "Set1", ...) {
scale_fill_brewer(palette = palname, ...)
}
x = tapply(sigtab$log2FoldChange, sigtab$Order, function(x) max(x))
x = sort(x)
sigtab$Order = factor(as.character(sigtab$Order), levels = names(x))
x = tapply(sigtab$log2FoldChange, sigtab$Family, function(x) max(x))
x = sort(x)
sigtab$Family = factor(as.character(sigtab$Family), levels = names(x))
ggplot(sigtab, aes(x = log2FoldChange, y = Family, color = Order)) + geom_point(aes(size = padj)) +
scale_size_continuous(name = "padj", range = c(8, 4)) + theme(axis.text.x = element_text(angle = -25,
hjust = 0, vjust = 0.5))
8.4 Group7 vs Group8
ps.ng.tax_sel <- ps.ng.tax
otu_table(ps.ng.tax_sel) <- otu_table(ps.ng.tax)[, c("40", "41", "42", "43", "44",
"45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55")]
diagdds = phyloseq_to_deseq2(ps.ng.tax_sel, ~Group)
diagdds$Group <- relevel(diagdds$Group, "Group8")
diagdds = DESeq(diagdds, test = "Wald", fitType = "parametric")
resultsNames(diagdds)
[1] "Intercept" "Group_Group7_vs_Group8"
res = results(diagdds, cooksCutoff = FALSE)
alpha = 0.05
sigtab = res[which(res$padj < alpha), ]
# sigtab = cbind(as(sigtab, 'data.frame'),
# as(tax_table(ps.ng.tax_sel)[rownames(sigtab), ], 'matrix')) sigtab <-
# sigtab[rownames(sigtab) %in% rownames(tax_table(ps.ng.tax_most_copied)), ]
kable(sigtab) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
baseMean | log2FoldChange | lfcSE | stat | pvalue | padj |
---|---|---|---|---|---|
# library('ggplot2') theme_set(theme_bw()) scale_fill_discrete <-
# function(palname = 'Set1', ...) { scale_fill_brewer(palette = palname, ...) }
# x = tapply(sigtab$log2FoldChange, sigtab$Order, function(x) max(x)) x =
# sort(x) sigtab$Order = factor(as.character(sigtab$Order), levels=names(x)) x
# = tapply(sigtab$log2FoldChange, sigtab$Family, function(x) max(x)) x =
# sort(x) sigtab$Family = factor(as.character(sigtab$Family), levels=names(x))
# ggplot(sigtab, aes(x=log2FoldChange, y=Family, color=Order)) +
# geom_point(aes(size=padj)) + scale_size_continuous(name='padj',range=c(8,4))+
# theme(axis.text.x = element_text(angle = -25, hjust = 0, vjust=0.5))