Phyloseq microbiome

1 Data

Import raw data and assign sample key:

BarcodeSequence LinkerPrimerSequence FileInput Group Sex_age pre_post_stroke Conc Vol_50ng Vol_PCR Description
NA NA 6341_S1_R1.fastq.gz_merged.fasta Group1 f.aged post 19.2 2.60 2.60 PCR1
NA NA 6340_S2_R1.fastq.gz_merged.fasta Group1 f.aged post 16.2 3.09 3.09 PCR1
NA NA 6342_S3_R1.fastq.gz_merged.fasta Group1 f.aged post 6.3 7.94 5.00 PCR1
NA NA 8129_S4_R1.fastq.gz_merged.fasta Group1 f.aged post 28.3 1.77 1.77 PCR1
NA NA 8130_S5_R1.fastq.gz_merged.fasta Group1 f.aged post 7.3 6.85 5.00 PCR1
NA NA 8128_S6_R1.fastq.gz_merged.fasta Group1 f.aged post 11.1 4.50 4.50 PCR1
NA NA 9989_S7_R1.fastq.gz_merged.fasta Group1 f.aged post 19.7 2.54 2.54 PCR1
NA NA 6341_S8_R1.fastq.gz_merged.fasta Group2 f.aged pre 18.0 2.78 2.78 PCR1
NA NA 6340_S9_R1.fastq.gz_merged.fasta Group2 f.aged pre 57.9 0.86 0.86 PCR2
NA NA 6342_S10_R1.fastq.gz_merged.fasta Group2 f.aged pre 17.0 2.94 2.94 PCR2
NA NA 8129_S11_R1.fastq.gz_merged.fasta Group2 f.aged pre 14.2 3.52 3.52 PCR2
NA NA 8130_S12_R1.fastq.gz_merged.fasta Group2 f.aged pre 19.5 2.56 2.56 PCR2
NA NA 8128_S13_R1.fastq.gz_merged.fasta Group2 f.aged pre 35.1 1.42 1.42 PCR2
NA NA 9989_S14_R1.fastq.gz_merged.fasta Group2 f.aged pre 7.9 6.33 5.00 PCR2
NA NA 16880_S15_R1.fastq.gz_merged.fasta Group3 f.young post 8.2 6.10 5.00 PCR2
NA NA 16681_S16_R1.fastq.gz_merged.fasta Group3 f.young post 7.2 6.94 5.00 PCR2
NA NA 16685_S17_R1.fastq.gz_merged.fasta Group3 f.young post 13.1 3.82 3.82 PCR3
NA NA 16686_S18_R1.fastq.gz_merged.fasta Group3 f.young post 13.2 3.79 3.79 PCR3
NA NA 16819_S19_R1.fastq.gz_merged.fasta Group3 f.young post 16.3 3.07 3.07 PCR3
NA NA 21909_S20_R1.fastq.gz_merged.fasta Group3 f.young post 2.6 19.23 5.00 PCR3
NA NA 16880_S21_R1.fastq.gz_merged.fasta Group4 f.young pre 17.0 2.94 2.94 PCR3
NA NA 16681_S22_R1.fastq.gz_merged.fasta Group4 f.young pre 17.6 2.84 2.84 PCR3
NA NA 16685_S23_R1.fastq.gz_merged.fasta Group4 f.young pre 20.2 2.48 2.48 PCR3
NA NA 16686_S24_R1.fastq.gz_merged.fasta Group4 f.young pre 29.0 1.72 1.72 PCR3
NA NA 16819_S25_R1.fastq.gz_merged.fasta Group4 f.young pre 27.0 1.85 1.85 PCR4
NA NA 16684_S26_R1.fastq.gz_merged.fasta Group4 f.young pre 4.3 11.63 5.00 PCR4
NA NA 21908_S27_R1.fastq.gz_merged.fasta Group4 f.young pre 18.0 2.78 2.78 PCR4
NA NA 21909_S28_R1.fastq.gz_merged.fasta Group4 f.young pre 9.4 5.32 5.00 PCR4
NA NA 4896_S29_R1.fastq.gz_merged.fasta Group5 m.aged post 25.0 2.00 2.00 PCR4
NA NA 4897_S30_R1.fastq.gz_merged.fasta Group5 m.aged post 25.2 1.98 1.98 PCR4
NA NA 4900_S31_R1.fastq.gz_merged.fasta Group5 m.aged post 15.7 3.18 3.18 PCR4
NA NA 9976_S32_R1.fastq.gz_merged.fasta Group5 m.aged post 34.0 1.47 1.47 PCR4
NA NA 4896_S33_R1.fastq.gz_merged.fasta Group6 m.aged pre 44.0 1.14 1.14 PCR5
NA NA 4897_S34_R1.fastq.gz_merged.fasta Group6 m.aged pre 41.0 1.22 1.22 PCR5
NA NA 4900_S35_R1.fastq.gz_merged.fasta Group6 m.aged pre 28.5 1.75 1.75 PCR5
NA NA 4898_S36_R1.fastq.gz_merged.fasta Group6 m.aged pre 96.0 0.52 0.52 PCR5
NA NA 5114_S37_R1.fastq.gz_merged.fasta Group6 m.aged pre 21.9 2.28 2.28 PCR5
NA NA 9975_S38_R1.fastq.gz_merged.fasta Group6 m.aged pre 15.7 3.18 3.18 PCR5
NA NA 9976_S39_R1.fastq.gz_merged.fasta Group6 m.aged pre 6.5 7.69 5.00 PCR5
NA NA 16888_S40_R1.fastq.gz_merged.fasta Group7 m.young post 38.0 1.32 1.32 PCR5
NA NA 16625_S41_R1.fastq.gz_merged.fasta Group7 m.young post 7.8 6.41 5.00 PCR6
NA NA 16824_S42_R1.fastq.gz_merged.fasta Group7 m.young post 42.1 1.19 1.19 PCR6
NA NA 16826_S43_R1.fastq.gz_merged.fasta Group7 m.young post 18.1 2.76 2.76 PCR6
NA NA 16827_S44_R1.fastq.gz_merged.fasta Group7 m.young post 9.6 5.21 5.00 PCR6
NA NA 21911_S45_R1.fastq.gz_merged.fasta Group7 m.young post 29.6 1.69 1.69 PCR6
NA NA 21914_S46_R1.fastq.gz_merged.fasta Group7 m.young post 62.3 0.80 0.80 PCR6
NA NA 16888_S47_R1.fastq.gz_merged.fasta Group8 m.young pre 13.0 3.85 3.85 PCR6
NA NA 16625_S48_R1.fastq.gz_merged.fasta Group8 m.young pre 43.1 1.16 1.16 PCR6
NA NA 16824_S49_R1.fastq.gz_merged.fasta Group8 m.young pre 13.2 3.79 3.79 PCR7
NA NA 16826_S50_R1.fastq.gz_merged.fasta Group8 m.young pre 32.2 1.55 1.55 PCR7
NA NA 5115_S51_R1.fastq.gz_merged.fasta Group8 m.young pre 33.2 1.51 1.51 PCR7
NA NA 16827_S52_R1.fastq.gz_merged.fasta Group8 m.young pre 12.8 3.91 3.91 PCR7
NA NA 16691_S53_R1.fastq.gz_merged.fasta Group8 m.young pre 20.7 2.42 2.42 PCR7
NA NA 21911_S54_R1.fastq.gz_merged.fasta Group8 m.young pre 9.8 5.10 5.00 PCR7
NA NA 21914_S55_R1.fastq.gz_merged.fasta Group8 m.young pre 6.8 7.35 5.00 PCR7

3 Read the data and create phyloseq objects

Three tables are needed

  • OTU
  • Taxonomy
  • Samples
phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 40594 taxa and 54 samples ]
sample_data() Sample Data:       [ 54 samples by 10 sample variables ]
tax_table()   Taxonomy Table:    [ 40594 taxa by 7 taxonomic ranks ]
phy_tree()    Phylogenetic Tree: [ 40594 tips and 40592 internal nodes ]

Visualize data

 [1] "17" "53" "49" "26" "36" "10" "51" "8"  "14" "29" "20" "31" "24" "34" "2" 
[16] "35" "27" "21" "13" "23" "38" "9"  "32" "37" "48" "52" "33" "25" "12" "39"
[31] "22" "18" "6"  "11" "50" "55" "1"  "44" "43" "46" "16" "47" "28" "5"  "41"
[46] "15" "30" "42" "7"  "45" "4"  "19" "54" "40"
[1] "Domain"  "Phylum"  "Class"   "Order"   "Family"  "Genus"   "Species"
 [1] "BarcodeSequence"      "LinkerPrimerSequence" "FileInput"           
 [4] "Group"                "Sex_age"              "pre_post_stroke"     
 [7] "Conc"                 "Vol_50ng"             "Vol_PCR"             
[10] "Description"         

Normalize number of reads in each sample using median sequencing depth.

4 Heatmaps

We consider the most abundant OTUs for heatmaps. For example one can only take OTUs that represent at least 1% of reads in at least one sample. Remember we normalized all the sampples to median number of reads (total). We are left with only 166 OTUS which makes the reading much more easy.

17 53 49 26 36 10 51 8 14 29 20 31 24 34 2 35 27 21 13 23 38 9 32 37 48 52 33 25 12 39 22 18 6 11 50 55 1 44 43 46 16 47 28 5 41 15 30 42 7 45 4 19 54 40
EU505095.1.1391 0 0 443 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 69 0 0 0 0 0 0
HK240365.1.1492 3 13 4455 8 3713 2 6824 5 8144 4375 1 3778 5 5516 2 4897 5 4 33 11 46 6 11 8747 9 1043 1548 3 2 6 6043 2 1094 40 2022 1 2 9440 7671 3 11535 2 2 3 8 0 4566 7614 6920 10 1179 2 5 16
EU791193.1.1502 2189 335 210 199 52 415 339 731 273 166 57 571 89 93 1538 92 168 520 240 408 185 456 526 97 1224 262 333 251 389 267 262 774 661 1220 196 7 1296 206 217 622 111 318 1 770 1682 267 464 274 750 0 1531 702 0 125
EF406536.1.1499 368 102 159 101 179 285 600 647 381 622 298 865 264 669 135 454 192 137 353 370 659 194 1246 350 615 833 636 234 345 537 377 450 194 452 188 192 684 226 193 247 342 222 251 14 33 99 1410 490 1334 379 892 133 127 183
EU791223.1.1512 159 43 60 36 101 96 179 234 139 211 101 256 101 318 47 205 67 66 122 192 283 65 405 160 245 301 303 51 150 248 92 203 70 168 46 71 255 54 64 85 120 61 118 9 11 36 431 139 462 116 292 28 39 104
JX198570.1.1508 0 0 0 0 4 378 19 61 8 4 4 30 0 59 269 5 0 0 2 0 173 16 79 7 0 0 1 0 58 32 0 0 2 432 0 0 119 0 1 0 0 0 1 143 16 0 28 0 1 0 3 0 0 56
CVUG01000013.3917.5427 33 8 12 8 10 37 10 0 23 26 71 15 5 69 27 40 105 0 95 2 205 60 271 15 0 47 58 247 43 187 30 12 17 195 42 17 35 32 29 53 81 7 65 119 7 121 14 29 86 56 200 585 23 9
HL966144.1.1491 0 7 3 11 70 99 9 0 11 0 26 28 0 94 0 22 22 5 0 0 0 398 427 3 23 12 0 33 0 54 5 0 0 0 10 4 6 2 1 18 9 6 48 0 10 30 51 0 52 49 0 167 8 2
AB606239.1.1494 722 27 24 38 120 97 64 5 14 238 146 365 45 193 40 720 107 0 7 40 24 179 98 86 6 32 313 92 84 14 14 200 10 1 33 91 403 23 9 199 44 51 45 138 34 445 196 2 118 631 10 177 178 18
AB622814.1.1518 39 55 34 5 11 18 14 1 9 7 109 12 16 14 3 14 260 4 6 2 29 77 36 13 16 60 5 153 84 39 29 4 0 9 92 2 10 18 5 46 94 24 61 103 98 104 8 3 22 100 13 522 66 36
FJ880076.1.1490 123 14 6 0 181 11 32 34 9 0 2 21 0 37 78 180 4 15 2 14 24 3 85 54 11 1 12 6 7 820 42 0 11 10 35 0 11 2 13 2 1 0 1 25 22 0 3 19 27 1 11 1 1 7
JQ084417.1.1495 64 18 3 10 1 9 1 1 5 163 23 9 31 32 0 22 26 1 9 16 27 14 19 2 32 12 546 24 24 0 3 26 12 7 20 3 3 8 13 75 17 17 30 18 33 51 11 12 3 28 15 117 17 163
JQ084693.1.1491 143 76 71 42 429 215 75 17 41 131 130 1 331 178 197 0 114 24 214 33 194 72 147 13 186 50 163 634 258 45 42 136 21 92 49 52 174 42 13 196 37 23 204 167 194 26 90 43 22 23 88 227 74 106
AB606325.1.1494 5 88 16 0 30 14 61 0 0 20 232 24 14 86 37 96 231 12 88 0 38 15 28 11 6 52 99 330 242 8 62 8 123 199 222 8 61 57 108 54 70 22 91 533 10 198 47 394 20 111 259 376 46 28
ASTC01000013.23144.24660 629 217 33 29 257 88 316 2 7 70 54 26 15 58 148 10 29 52 21 29 32 131 183 46 30 24 47 45 31 26 14 27 28 15 43 15 390 30 2 141 8 104 30 17 95 53 89 8 21 41 21 12 68 1025
JQ084374.1.1490 3 0 0 0 1325 56 19 2 4 18 6 1 3 127 136 0 9 6 0 12 18 235 2 9 80 0 106 32 61 3 1 9 0 4 0 6 39 0 0 16 0 0 7 29 6 0 19 0 0 1 1 0 8 7
EF602810.1.1476 220 4 1 198 1 172 5 35 48 9 4 1 144 8 73 1 5 17 690 36 3 14 2 0 51 3 82 41 66 0 0 20 1 3 2 2 27 1 4 45 1 0 5 4 9 11 7 3 33 1 2 0 4 3
HL953771.1.1511 316 161 37 39 47 57 38 2 53 221 301 37 230 55 33 34 453 256 103 46 126 95 1414 14 264 154 274 459 94 398 30 68 42 79 129 49 174 49 23 277 42 66 93 59 783 125 54 44 411 152 129 0 125 1373
AB969468.1.1539 2 4 81 2 2829 299 1152 2 16 2611 28 1128 3 2719 807 3943 126 34 18 1 2 4 1287 702 391 0 622 17 48 1414 80 4 4006 1717 115 150 312 4 2 34 1 29 16 109 90 5 903 383 180 1 1483 26 3 5
ASSR01000026.1887.3427 532 185 177 1987 41 2 2 1 2 1 52 0 37 2 3 3 746 830 0 1072 0 6 5 2 91 407 0 5 2083 4 1 5 5 6 853 84 3 7 1 131 0 87 592 514 101 3 9 17 0 13 8 0 390 5
New.ReferenceOTU515 1379 2776 690 6 128 8 3 27 3 12 2 224 6613 416 921 477 10 6 291 576 789 4342 151 3 7 2916 179 3708 2 1 656 380 24 201 1033 1 32 1337 1182 2 286 1454 5 2 2 1792 106 1 4 1 109 1 9 1
EF406647.1.1503 106 186 52 0 14 3 0 2 1 4 0 12 550 29 76 45 1 0 35 36 76 321 16 0 1 228 21 273 1 2 45 30 3 15 95 1 3 86 60 1 24 88 0 1 0 120 7 0 2 0 9 0 0 0
ASSX01000038.243.1764 327 9 5 0 0 0 903 0 32 1 15 0 0 0 0 1 4 6 82 813 0 0 0 660 56 0 0 0 23 0 0 0 0 465 0 39 0 3 1 20 0 0 82 7 8 0 0 0 2 4 248 2 0 2
HK693730.8.1517 1 4 2 0 0 460 0 12 0 0 0 1 13 1 10 0 0 1 3 0 5 27 1 0 0 6 0 12 3 0 2 2 0 3 1 0 7 4 0 0 2 2 0 4 1 3 4 0 0 0 3 0 0 0
New.ReferenceOTU186 3 39 5 14 8 1050 44 40 0 8 7 10 1 62 52 1 83 26 52 0 175 50 8 36 20 2 0 26 58 3 9 5 11 8 39 4 23 1 4 22 1 6 5 100 10 62 49 12 1 5 13 3 16 4
AB606268.1.1497 0 186 3 0 56 508 203 26 0 2 34 30 0 257 10 0 466 31 0 1 844 24 8 192 8 0 1 4 5 19 42 2 0 1 58 2 10 0 0 1 0 9 32 3 25 346 125 6 2 0 0 0 0 2
New.ReferenceOTU16 0 110 1 0 31 284 154 16 0 0 20 19 0 166 3 0 258 25 1 0 569 12 5 98 6 0 1 2 6 13 12 2 0 2 36 0 8 0 0 0 0 9 9 2 25 248 101 6 0 0 1 0 0 0
JPNB01000002.737568.739079 2 217 4 4 43 664 323 19 0 2 46 51 4 266 15 0 728 48 3 1 830 16 23 158 4 2 3 15 18 36 44 2 0 6 83 0 20 1 5 19 3 29 30 7 35 459 233 13 0 5 1 0 13 6
New.ReferenceOTU336 342 162 50 110 110 303 112 38 59 339 280 390 265 233 128 173 209 32 566 90 86 176 267 33 46 315 3888 214 1105 22 78 236 150 290 145 77 290 89 149 336 26 148 139 416 55 373 140 109 104 131 413 191 72 59
New.ReferenceOTU471 0 5 18 14 1 69 0 9 0 3 2 2 0 4 79 0 1 3 73 1 1 15 7 5 11 9 0 3 168 1 2 6 15 17 0 0 8 1 12 6 3 0 3 467 2 2 3 23 4 9 32 1 6 1
ACTP02000009.47.1566 6 3 0 636 0 1 0 3 0 0 11 0 5 3 4 0 0 1 256 3 3 0 3 1 2 1 0 4 58 0 0 19 0 0 4 1 2 0 0 6 0 0 0 21 6 0 1 1 1 8 0 0 44 0
AB627556.1.1524 1 277 133 0 143 54 58 195 272 57 1349 13 0 2 49 6 655 1 0 1 333 9 172 4 0 131 1 0 2 23 103 0 2 1 342 1 24 178 2 4 0 338 129 0 0 398 18 8 4 0 0 2 2 0
New.ReferenceOTU153 116 45 14 1 37 23 6 13 27 7 181 4 16 0 3 1 91 8 95 3 68 0 36 3 2 22 0 79 0 3 11 18 1 25 48 165 2 21 0 254 0 24 625 2 10 69 9 0 1 1 11 6 528 1
FJ879443.1.1488 0 0 0 655 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 11 0 0 0 0 49 0 0 0 0 0 0 1 0 0 0 4 0 0 0 4 0 0 0 0 17 0 0 0 0 0 0 0 0 0
JQ083995.1.1490 6 0 0 1160 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 18 0 0 0 0 78 0 0 0 0 0 0 1 0 0 1 1 0 0 0 2 0 0 0 0 20 0 0 0 0 0 0 0 0 0
AB606324.1.1498 20 52 66 12 1 12 7 2 24 159 10 99 85 15 6 6 71 5 158 0 5 14 29 5 22 29 104 123 71 9 32 36 5 3 26 77 116 33 34 96 10 89 14 84 36 146 70 105 44 129 10 532 34 13
AB606364.1.1499 2 7 10 0 0 13 3 2 0 0 0 24 0 0 28 1 1 44 0 0 9 0 10 0 14 0 0 107 0 1 3 0 0 1 0 1 0 2 4 15 1 0 6 0 838 0 10 1 2 49 0 7 55 35
AB626913.1.1497 0 0 0 0 0 0 0 0 0 0 30 0 1 0 0 0 11 0 0 0 0 0 813 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AB626943.1.1505 0 11 11 3 11 14 77 44 157 308 0 11 174 96 45 47 39 2 20 0 7 69 5 2 19 5 77 13 20 0 0 159 4 14 26 8 85 7 1 6 0 50 8 50 78 23 177 43 566 14 11 241 9 50
New.ReferenceOTU371 1 0 0 4 0 1 0 0 0 0 0 0 2 0 1 0 0 4 0 0 1824 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12
AATF01001259.61.1571 6 17 32 506 0 16 66 59 0 35 14 4 6 5 26 7 33 189 0 129 4 145 28 8 4 11 6 30 37 1 54 32 2 40 92 22 304 0 20 14 1 8 21 59 60 7 5 11 9 56 23 7 39 43
AB606370.1.1495 385 10 25 747 2 715 3 187 85 287 32 385 754 66 648 12 93 33 1763 237 2 170 31 8 195 33 51 20 92 13 41 256 25 155 88 24 457 10 57 151 3 38 41 132 274 208 135 67 163 5 293 200 56 113
JN012616.1.1459 0 10 118 0 0 1 0 0 1 0 12 0 0 0 0 0 0 420 0 0 0 0 0 0 501 0 0 0 0 0 130 0 0 0 164 6 0 4 0 85 0 0 0 0 133 0 0 62 0 0 0 0 0 230
EF603872.1.1478 594 2 41 1 9 0 0 0 0 1 8 0 0 0 0 0 3 6 0 1108 0 0 0 5 0 0 0 0 591 1 0 0 0 0 2 1 0 0 0 29 0 0 61 171 0 0 0 2 0 0 0 0 9 0
AQFU01000029.6100.7620 73 12 13 96 14 46 38 206 92 11 37 71 26 242 82 8 59 12 176 50 149 175 115 59 14 82 525 41 319 30 30 13 68 108 18 2 26 22 9 8 29 24 57 565 7 94 127 32 79 157 106 77 20 119
AB969484.1.1523 0 80 82 24 734 39 27 4 6 67 101 36 60 133 12 21 71 17 83 0 155 34 98 3 39 1 107 115 22 13 100 51 16 86 41 10 46 10 2 109 0 43 13 35 53 96 35 177 9 31 23 83 8 50
EF096325.1.1399 104 264 77 91 0 17 19 89 19 48 2 5 0 0 236 1 10 440 667 285 21 319 128 21 252 27 1 48 550 3 82 2 0 20 52 105 105 0 10 107 1 3 110 727 903 1 95 2 74 572 76 15 197 61
DQ777894.1.1513 347 54 32 14 81 250 33 1110 229 112 92 27 376 242 467 24 194 147 679 58 238 2554 458 37 174 178 985 423 63 50 54 232 479 611 22 9 392 193 76 38 168 39 43 21 199 1023 152 152 404 205 560 228 43 1039
EU622695.1.1497 943 2055 574 0 3088 2 1432 2214 950 1178 388 655 327 1149 4347 2361 2680 2994 2137 17 1056 0 636 1424 1734 3645 1124 2825 2207 768 3164 1296 3272 3679 2108 36 0 3610 5342 1569 1828 3683 12 5694 3001 2631 366 174 150 14 2723 396 118 129
AB702763.1.1498 0 0 0 0 0 927 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 309 0 0 0 0 0 1 0 0 0 1 0 0 0 0 429 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
EU622762.1.1520 47 164 0 0 0 7 0 282 3 1 0 0 4 0 188 0 110 1157 1 2 42 0 121 0 20 67 0 7 0 299 300 8 0 0 292 1 1 596 4 0 14 440 0 0 284 480 1 1 23 0 0 42 0 94
JQ084406.1.1485 0 440 162 1 2 0 1 0 0 0 601 0 0 0 0 0 363 0 449 1 627 1 181 1 0 105 0 549 475 294 214 0 259 622 177 436 0 318 523 131 169 378 932 529 0 228 0 267 1 543 42 30 717 0
New.ReferenceOTU511 0 131 1 0 0 0 0 0 0 0 468 1 1 0 0 0 3 0 0 0 0 0 1 0 1 191 0 179 0 0 109 0 71 1 23 8 0 367 1390 18 745 2 11 13 0 119 0 4 0 5 27 466 41 0
AB021157.1.1508 0 752 339 0 0 999 527 455 372 0 642 1 2 1 2131 1 107 0 17 1 311 245 4170 418 1 1077 0 490 3 1144 692 0 1581 995 286 3 1848 96 403 542 1195 891 229 2 0 1406 0 3212 2376 1902 5309 515 251 0
BAIW01000188.173.1680 1 15 48 0 327 36 32 121 71 1817 37 2079 0 410 150 600 4 2 21 3 140 20 144 60 0 31 329 63 2 38 7 0 835 104 5 16 1547 0 22 104 36 23 42 2 1 35 1474 4 963 81 73 539 27 0
CP015401.3482423.3483958 522 98 120 20 74 121 161 265 117 76 36 191 376 67 330 75 83 99 128 115 75 210 84 98 176 109 135 99 74 156 101 1242 435 112 45 71 215 69 259 391 161 271 83 372 1529 348 92 48 63 67 16 156 258 198
LT622246.247875.249393 0 55 146 1 938 248 118 627 421 7905 161 11080 0 1374 868 1953 51 1 149 9 487 157 705 220 1 115 1153 370 37 106 51 2 4352 590 34 54 9319 10 157 796 48 137 194 16 2 150 7669 38 4938 449 392 2634 134 3
AB559603.1.1522 0 92 112 0 15 101 160 23 66 149 50 234 1 66 257 20 8 184 145 0 53 4 376 159 234 209 89 17 5 411 231 1 100 122 44 118 123 167 308 271 97 166 32 57 111 163 339 87 560 980 306 119 103 161
AB627719.1.1500 0 278 0 0 1 141 99 0 199 262 0 57 0 42 104 5 6 26 111 0 32 27 143 38 0 0 54 1 0 20 1 0 58 484 0 0 0 0 1 0 4 0 0 0 0 0 57 0 5 0 335 0 2 155
AB606293.1.1476 0 305 1 0 1 0 0 0 0 0 197 0 0 0 0 0 111 44 0 0 0 0 0 0 0 18 0 90 0 0 30 0 0 0 249 0 0 651 0 382 3 0 256 0 0 0 0 42 0 0 0 11 0 72
EF406551.1.1491 665 16 3 243 20 4 14 3 12 20 10 52 134 17 42 3 18 3 8 113 27 38 27 2 98 12 33 26 27 0 8 119 2 0 42 4 161 6 2 21 17 4 37 14 47 30 41 41 62 55 11 101 14 11
JQ084431.1.1502 13 3 2 10 249 1 40 9 135 17 62 17 6 5 134 126 93 52 114 5 3 2 7 70 0 33 149 31 15 86 125 4 355 173 15 3 2 6 5 12 24 14 40 147 116 36 0 4 93 202 129 110 20 667
JX218602.1.1508 1 1 75 0 0 442 1 74 203 0 109 0 0 0 59 3 3 0 377 0 0 0 0 0 0 35 0 0 7 1 26 0 1229 545 0 0 1 13 2 8 0 335 197 63 0 69 1 43 134 556 825 142 479 0
EU510524.1.1382 709 0 0 0 1 331 0 125 6 3 0 4 0 21 1 53 0 0 0 197 14 0 36 279 0 0 0 0 0 1640 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 49 0 2 0 0 0 0 0
HL953748.1.1486 0 1 0 0 143 0 124 49 51 0 0 18 0 0 0 18 14 25 0 0 0 0 21 97 0 4 0 0 73 236 7 0 318 270 8 0 0 386 1 0 0 0 0 572 0 0 24 0 6 0 707 0 0 18
AB606249.1.1546 276 265 18 33 177 318 231 99 85 442 318 340 174 280 191 136 234 16 336 65 374 254 599 104 128 131 678 423 373 68 27 50 388 48 167 23 528 64 60 362 50 47 113 237 170 272 188 472 193 63 275 824 76 8
New.ReferenceOTU132 0 0 0 0 0 0 0 0 332 0 621 0 0 0 0 0 0 0 0 0 138 0 114 0 0 0 0 0 0 761 0 0 0 0 0 0 0 0 0 0 0 0 136 0 0 0 1 0 266 0 0 0 0 0
New.ReferenceOTU704 0 0 0 1 350 0 254 0 0 444 0 11 0 33 0 132 1 1 0 0 0 0 0 78 0 0 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0
CDZJ01005172.1679.3161 0 11 34 0 0 0 42 0 8 0 0 1 0 0 0 0 5 136 0 0 2 0 38 11 10 33 0 9 8 230 262 0 16 24 34 0 0 384 329 0 389 149 0 17 469 172 0 321 258 1 780 486 0 80
AB606338.1.1472 5 0 197 0 5 0 12 0 81 0 24 0 1 17 0 38 22 4 0 0 1 0 1 21 3 134 5 51 0 0 71 47 0 0 313 0 0 70 267 0 730 0 2 1 166 0 72 162 12 82 0 43 22 104
EF406549.1.1479 1754 0 9 1 0 0 4 0 12 0 19 1 238 1 0 4 58 2 5 998 0 5 2 0 17 25 3 2 692 3 1 325 1 44 0 20 4 9 60 14 0 0 14 4 239 3 1 26 0 10 3 0 33 19
AJ308386.1.1462 8 3 0 23 7 3 0 0 0 0 10 0 82 1 0 1 8 4 0 14 0 0 1 0 16 12 0 65 1123 0 11 0 0 1 11 1 0 6 0 0 0 0 7 226 2 1 1 1 0 2 1 0 52 1
AB606393.1.1460 75 15 8 2 0 0 0 1 0 1 7 0 566 0 0 0 57 0 0 6 1 0 0 0 89 3 0 76 0 0 1 0 0 0 20 3 0 6 0 0 0 14 50 1 1 64 0 1 0 1 0 0 29 2
AB702909.1.1496 233 2 1 1096 58 1275 615 961 0 261 0 456 55 368 293 247 0 1 548 308 0 388 41 2331 0 0 112 0 1222 241 0 4 7 39 1 0 44 1 0 0 0 0 1 144 0 0 364 2 0 0 75 0 0 0
EU791043.1.1531 138 48 29 541 6 80 12 109 70 576 172 42 47 10 669 6 128 83 26 178 212 29 50 11 47 51 11 9 26 165 27 661 48 22 12 69 191 19 39 130 31 108 19 118 158 50 41 6 121 85 52 98 362 45
EU790984.1.1546 489 103 100 2029 19 287 28 417 245 1361 517 146 156 32 2505 19 436 167 78 357 679 115 181 25 121 132 26 49 101 450 87 2014 168 128 63 197 717 57 123 430 55 384 69 399 501 110 133 23 537 221 224 254 1372 111
AATF01001055.137.1680 187 46 27 667 6 110 17 133 76 575 208 46 61 13 814 11 156 77 21 209 311 49 60 13 49 76 16 23 18 221 45 778 48 49 18 64 244 23 45 120 53 112 32 142 198 49 43 6 185 103 87 122 529 57
LG042641.312212.313771 236 0 653 326 11 275 102 968 575 79 179 409 181 42 96 265 236 949 148 461 124 872 48 259 191 0 1 176 158 471 61 5 434 116 0 235 0 0 0 1 2 0 411 2 84 34 5 27 19 0 1 11 0 385
AB559728.1.1569 2 159 626 123 40 85 38 479 261 1 161 233 53 41 2 135 177 400 83 224 100 367 29 95 84 21 1 97 66 39 159 3 165 28 83 100 0 118 1 7 2 0 241 0 8 1 4 30 4 0 1 3 0 44
AB727348.1.1509 153 0 0 98 23 347 13 1422 1573 0 406 45 13 27 26 32 1076 87 59 32 120 93 12 25 17 1 2 0 372 295 1 15 29 108 1 0 408 3 0 2 0 0 451 3 15 0 7 0 430 0 230 0 2 1344
U07573.1.1470 22 0 0 385 12 78 48 0 8 80 90 170 122 8 11 29 24 0 36 41 79 150 38 70 0 0 481 1 69 8 0 7 10 33 1 12 12 0 0 90 0 0 30 45 53 0 53 0 23 120 12 0 87 17
CCPS01000022.154.1916 7 0 5 0 0 0 0 0 1 6 0 514 0 0 8 0 1 0 0 0 6 2 0 0 0 2 2 0 0 2 0 8 0 0 0 1 1123 5 0 1 34 0 5 6 142 0 248 713 31 37 25 1 5 2
AB606354.1.1519 96 321 161 115 692 260 98 295 62 26 544 26 492 317 71 79 196 160 100 107 495 956 341 191 603 161 726 880 269 78 91 22 172 164 683 50 129 34 22 286 83 103 681 20 139 469 37 746 105 674 106 475 59 1322
AYGZ01000001.327.1863 48 44 34 0 0 2 39 3 0 0 94 1 653 0 16 1 209 29 8 59 228 1293 37 159 177 59 0 1182 0 1 10 4 30 5 161 4 31 9 220 50 90 111 17 0 40 400 0 133 0 70 18 1741 81 759
DQ777900.1.1512 61 87 134 8 298 262 148 128 81 10 67 0 9 218 52 197 308 36 113 58 44 90 104 76 88 172 255 75 74 203 68 4 44 84 71 73 10 150 43 125 29 638 310 79 31 70 18 70 15 683 74 12 422 313
JX198592.1.1491 0 156 237 0 9 183 91 1496 0 27 0 56 0 40 92 257 1 8 10 0 39 210 22 440 7 9 15 1 0 125 116 0 0 0 26 0 49 22 10 0 11 0 0 0 7 0 51 18 0 0 0 0 0 27
EF097505.1.1302 78 1 13 854 7 54 16 280 237 16 0 18 277 55 43 14 0 109 48 594 1 114 0 48 55 1 6 2 33 1 8 124 1 10 1 4 10 2 2 9 0 61 1 4 19 13 41 0 314 14 19 2 2 119
AWFQ01000007.543.2090 62 1504 977 961 162 766 311 791 1905 399 0 683 3 649 640 758 2 6 672 39 164 332 303 299 2 539 73 0 42 1162 893 24 7 145 473 229 206 2 9 455 174 8 0 60 178 11 478 63 407 0 520 101 0 18
CP007457.1550473.1552017 2 32 647 112 167 392 225 305 49 290 0 315 1 486 200 910 0 0 444 0 24 132 6 295 0 533 38 1 0 121 653 1 0 64 405 86 57 2 6 197 319 5 0 0 0 8 276 29 3 1 278 14 0 1
AB627487.1.1525 30 114 210 59 0 41 13 0 0 0 160 10 11 10 1 6 156 127 18 39 3 2 3 37 6 110 7 1019 20 0 12 9 4 5 13 23 0 10 58 409 0 83 67 16 27 888 3 122 1 540 11 64 223 217
EU622689.1.1499 0 0 1 0 0 237 11 33 135 1 13 2 0 0 177 0 29 0 67 0 2 5 1 0 0 4 4 0 0 0 18 0 557 275 3 15 14 1 13 76 2 2 0 3 0 5 1 0 30 4 25 1 12 0
AB626908.1.1497 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 32 0 0 0 0 0 68 0 6 0 0 21 0 0 0 20 0 0 7 0 0 0 10 7 0 0 2 0 1 0 4 0 7 431 0
New.ReferenceOTU52 0 0 15 1 0 1 0 1 0 0 725 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 22 0 0 0 134 0 9 0 0 0 0 0 245 0 0 0 1 15 0 3 1 0 17 0
KC163095.1.1526 0 0 23 1 0 0 1 2 0 0 1181 0 0 0 6 0 1 0 0 0 8 0 0 0 0 0 0 0 0 0 39 0 0 0 272 0 14 0 0 0 0 0 334 0 0 0 5 16 0 2 0 0 24 0
JQ084996.1.1499 0 12 15 61 48 15 97 14 91 6 264 20 256 59 88 34 134 7 84 0 384 556 116 53 47 19 112 2 32 3 49 33 53 12 125 49 58 25 0 240 0 8 283 12 46 262 22 96 11 14 0 17 7 0
JX198656.1.1515 23 0 8 29 0 907 187 13 24 42 45 17 419 101 25 5 4 1 642 18 154 243 12 28 815 2 12 5 136 2 4 226 90 14 5 7 471 0 38 57 2 0 48 21 90 17 68 10 55 24 18 25 45 4
JQ085018.1.1515 94 24 19 2 11 78 36 219 14 66 35 99 144 63 47 168 14 76 87 42 931 231 289 128 57 43 18 329 159 11 15 23 122 156 10 20 99 3 40 56 8 5 34 130 16 8 42 40 46 11 128 310 162 23
AB627586.1.1525 0 1 2 0 0 0 0 0 0 8 0 10 0 0 0 0 0 1 0 0 0 0 0 0 197 0 0 0 0 0 0 0 0 0 8 7 0 0 0 2 0 80 2 0 1625 0 55 4 0 1 0 2 0 0
AB622818.1.1552 0 41 6 204 40 339 4 47 37 4 51 15 36 23 125 3 3 4 17 0 74 531 120 0 33 146 9 191 12 141 26 26 4 14 33 2 102 11 97 4 35 25 7 14 61 64 79 39 54 5 50 210 7 11
HM123880.1.1494 1 0 5 1296 0 115 225 1 0 0 1 0 0 0 0 0 45 0 255 0 0 0 0 28 68 0 0 0 7 0 0 0 0 10 15 58 0 3 1 51 0 0 6 1 0 0 0 0 0 1 12 0 12 0
HM124103.1.1494 0 0 3 439 0 43 77 0 1 0 2 0 0 1 0 0 19 0 101 0 0 0 0 16 22 0 0 0 0 0 0 0 0 0 0 12 0 0 0 14 0 0 2 1 0 0 0 0 0 0 6 0 0 0
CP015403.1369456.1371009 0 28 32 2 1 941 11 428 432 0 13 0 0 0 377 0 3 0 9 0 9 180 14 26 0 3 0 1 446 75 23 0 0 43 1 6 78 0 2 6 8 8 8 185 0 2 0 3 135 4 19 17 15 0
CDYJ01026408.72.1593 169 579 1446 1726 0 26 0 40 239 1 58 1 252 0 25 0 145 423 1 995 3 16 0 0 86 99 1 36 0 0 466 111 0 0 360 151 8 46 53 523 136 30 145 1 127 26 0 45 95 51 0 110 158 130
EU791028.1.1512 0 3 0 0 140 0 978 0 0 123 0 258 0 610 0 796 0 2 704 1 133 0 29 1305 0 0 261 0 0 143 0 0 47 357 0 0 0 0 0 0 0 0 0 0 0 0 160 0 0 0 200 1 0 0
EU791198.1.1518 0 0 0 0 40 0 312 0 0 41 0 79 0 182 0 300 0 0 200 0 50 0 9 509 0 0 81 0 0 53 0 0 5 95 0 0 0 0 0 0 0 0 1 0 0 0 55 0 0 0 47 0 0 0
JQ085082.1.1487 472 178 52 21 35 0 48 0 2 7 108 42 193 32 1 42 239 561 1 554 14 0 3 2 554 417 17 2 0 2 117 2449 0 0 75 217 0 944 1416 71 309 482 188 0 743 237 287 75 0 266 0 17 88 820
JQ083727.1.1489 1286 387 51 149 1570 473 627 376 859 34 1159 27 1765 1214 531 793 130 25 787 1214 837 39 85 302 347 141 536 518 650 519 95 434 742 2926 358 388 21 211 68 39 8 487 745 1312 193 30 36 69 82 212 14 35 1795 135
EF603126.1.1475 273 78 231 48 0 4 0 0 23 0 258 0 181 0 0 0 338 25 6 186 0 36 0 0 165 129 1 89 1 0 127 45 1 5 404 167 2 62 27 21 16 117 316 0 40 92 0 54 6 58 1 4 612 57
AB702766.1.1491 785 187 21 3 2 0 157 2 81 0 276 2 96 1 5 0 117 260 0 77 168 1 146 132 24 287 1 114 23 475 547 2150 0 0 389 132 17 415 784 428 502 361 69 274 355 421 0 212 19 315 0 409 236 552
EF603419.1.1478 0 45 615 1 62 58 1 44 55 70 232 132 0 212 95 164 192 1 67 0 217 43 81 1 0 510 208 230 51 51 292 1 13 114 353 429 127 86 131 120 92 25 358 205 0 79 114 148 67 152 91 97 900 0
DQ815760.1.1447 413 176 110 52 95 55 86 125 106 123 225 114 52 86 223 122 135 332 86 242 142 85 420 89 434 190 74 156 109 263 100 261 24 56 78 311 166 155 94 217 135 357 286 99 531 212 259 270 403 175 145 258 135 212
EU791171.1.1508 214 913 0 534 156 564 323 770 603 60 0 17 183 279 215 180 0 2 471 266 266 705 191 448 0 0 213 0 343 569 2 141 100 250 0 0 51 1 0 0 1 1291 1 199 0 299 41 0 59 1 89 1 1 1
JQ084893.1.1488 0 56 26 0 0 0 0 0 0 1 104 0 0 0 0 0 256 0 77 0 0 0 0 0 0 327 0 128 46 0 199 0 237 94 43 19 0 123 203 24 140 164 42 257 0 175 0 111 0 89 452 264 36 0
EU791086.1.1496 93 1870 1317 710 320 866 468 824 483 144 110 82 744 421 482 456 471 1735 952 617 341 699 75 435 1413 1738 533 1421 452 283 972 134 220 427 1042 104 59 400 422 101 441 264 19 22 304 20 30 28 1 6 16 8 27 12
EF603719.1.1492 202 418 301 897 877 1486 1050 1371 765 355 77 174 1637 1146 781 1357 780 156 1653 2500 892 1099 122 1268 101 439 1414 205 676 702 197 289 347 709 213 18 90 79 87 19 151 46 34 36 28 6 34 4 0 1 20 6 6 2
HM123899.1.1495 0 122 0 0 141 406 342 318 926 552 0 567 0 419 512 348 0 2 502 1 321 211 419 331 0 1 301 102 315 181 0 0 1070 131 1 0 469 0 0 1 0 0 0 389 0 0 488 0 682 0 472 228 0 0
EF406773.1.1501 109 58 98 11 4 0 1 0 15 16 97 39 20 6 0 4 132 150 0 58 0 1 0 0 164 141 13 101 0 0 104 50 1 2 84 239 13 120 110 163 113 170 217 0 458 142 25 198 123 312 11 42 143 113
EU791052.1.1511 320 259 266 753 228 275 242 148 310 201 111 167 243 646 231 456 507 49 451 231 151 252 190 214 376 436 595 286 156 307 133 241 999 201 220 1081 102 26 167 432 30 888 21 272 106 157 60 117 18 17 4 61 280 34
JN012682.1.1467 127 0 0 8 413 164 306 254 634 381 16 278 14 693 231 699 8 0 269 12 221 163 491 512 22 0 353 483 192 1017 0 36 317 83 0 48 265 0 0 31 0 1 17 182 254 0 384 0 369 1 452 98 0 4
AGZO01000001.452.1966 751 37 2 10 5 13 85 41 30 25 10 38 248 26 153 10 38 97 31 446 39 14 112 53 193 6 2 22 13 89 20 1982 13 8 3 58 339 0 14 68 75 47 1 3 2141 61 109 198 9 142 31 483 5 3517
JQ083904.1.1489 0 155 138 0 55 0 116 0 0 174 114 125 1 60 0 40 138 1 68 0 73 0 140 131 0 129 60 74 236 248 178 0 240 58 87 200 0 317 468 243 1163 266 300 638 0 706 231 331 3 294 149 134 232 0
AB606312.1.1491 1 812 733 2 181 0 715 0 1 872 687 813 0 273 1 206 913 3 419 3 308 0 862 540 1 547 242 435 1711 1215 1115 0 1636 364 481 1074 0 2066 3118 1467 835 2004 1469 3724 0 2872 1534 2231 3 1361 1016 673 1497 2
CP015402.2294917.2296466 145 439 332 328 142 393 296 293 844 301 376 246 170 293 461 358 175 310 409 304 232 319 898 365 206 109 415 148 799 770 331 354 24 348 322 667 605 46 8 586 109 463 335 259 130 98 425 444 1289 272 509 167 228 176
EU791056.1.1502 124 25 119 239 36 108 46 41 72 61 54 66 154 119 18 73 35 86 68 227 116 50 42 37 32 36 120 54 86 54 111 90 7 15 46 907 40 3 8 105 11 84 238 49 38 19 45 63 49 48 56 10 242 56
EF604562.1.1497 112 37 116 207 8 24 5 8 53 16 103 6 114 17 4 22 59 82 39 212 50 8 26 12 35 87 27 71 17 33 168 95 2 7 39 1451 12 3 8 138 27 95 430 10 30 25 12 80 32 96 28 20 526 37
AB606317.1.1500 686 134 150 129 24 86 88 119 126 48 219 67 63 117 67 70 193 884 71 202 75 130 168 109 810 63 44 115 184 91 295 611 20 52 244 882 274 78 163 782 278 475 248 132 1295 723 199 1414 270 2500 292 800 198 1927
EU451397.1.1414 0 0 106 0 0 0 0 8 0 0 0 0 1 0 20 0 0 620 0 0 2 9 1 2 209 204 0 0 0 0 445 1 1 0 199 0 17 965 2229 0 540 0 0 0 232 0 0 117 0 0 0 0 0 1065
AB606322.1.1499 0 0 0 0 90 92 281 659 506 54 172 7 0 367 146 317 11 0 204 0 455 780 30 127 0 20 210 0 509 58 0 1 608 306 335 496 0 122 218 32 0 1 524 337 0 0 68 0 170 75 149 0 790 0
New.ReferenceOTU559 0 0 0 0 53 46 126 315 629 30 225 3 0 149 81 113 4 0 69 1 440 387 40 66 0 20 82 0 228 71 0 0 222 119 127 6 1 70 89 1 0 0 597 175 0 0 42 0 160 0 59 1 21 0
EU791133.1.1509 131 241 148 305 7 298 106 147 98 5 88 2 406 41 26 10 128 265 124 600 142 165 5 113 243 193 26 87 166 42 207 145 35 32 68 759 67 14 0 255 19 193 207 58 50 28 67 51 91 331 19 56 428 46
EU791170.1.1521 400 897 555 1259 27 927 366 526 299 12 309 10 1333 141 98 23 330 759 430 1758 412 609 20 314 763 524 95 329 580 131 646 502 117 105 230 2839 220 23 4 797 37 756 639 245 170 107 209 142 335 924 49 171 1518 137
EF406604.1.1522 75 991 625 4 0 2 1 0 79 0 324 10 1 1 0 0 177 480 1 8 54 1 57 2 58 784 0 38 5 321 690 64 0 0 956 3715 0 281 63 1577 137 1075 46 16 25 1026 2 280 86 171 0 187 137 238
EF603122.1.1484 104 320 414 213 37 179 163 192 106 92 391 99 117 156 177 89 170 63 245 259 197 210 205 72 34 80 183 53 168 196 301 123 30 107 341 963 275 108 80 458 42 211 374 119 96 217 93 193 93 442 237 180 128 42
EU791037.1.1514 0 0 221 0 0 0 0 0 0 1 5 0 0 0 0 0 137 595 0 2 9 0 0 0 267 116 0 111 0 0 263 0 0 0 37 4 0 36 42 269 29 0 2 1 93 0 0 114 0 60 1 121 0 116
EF406671.1.1517 0 0 189 0 0 0 0 0 0 0 9 0 0 0 0 0 121 641 1 0 8 0 0 4 269 105 0 80 0 0 215 0 0 0 38 1 0 30 30 233 39 0 2 0 75 0 0 65 0 52 0 86 1 149
EU791186.1.1495 2 81 296 0 4 0 22 0 3 22 22 23 0 10 0 19 231 2 42 0 2 1 0 25 0 82 9 106 5 5 453 1 0 91 172 374 0 164 199 299 83 87 0 57 0 94 26 167 0 180 50 59 2 2
JQ084057.1.1501 223 239 937 20 18 108 68 114 47 67 58 64 36 32 0 50 696 677 121 82 310 78 268 128 336 288 39 346 33 783 1530 182 4 279 577 1170 117 599 660 1076 441 294 3 202 281 345 76 469 7 623 123 161 1 467
EF406453.1.1508 204 41 67 123 34 66 56 95 182 91 118 86 109 87 115 73 54 388 179 191 52 89 127 102 271 28 139 42 118 254 59 267 94 76 54 275 136 49 24 229 31 198 60 198 212 86 73 71 173 219 273 71 53 451
New.ReferenceOTU495 0 0 96 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 44 0 0 0 0 426 1 0 0 1193 0 0 650 183 0 177 0 0 0 0 0 0 179 0 0 0 0 0 0
EU791120.1.1513 56 206 121 173 12 271 91 138 84 5 101 6 220 35 20 3 83 126 101 308 131 189 4 89 142 111 25 58 130 37 142 92 37 27 58 489 45 6 1 155 9 132 199 52 21 20 52 32 88 182 10 29 255 36
EF406763.1.1510 1777 11 682 381 22 68 48 157 201 45 1604 54 1228 74 20 33 984 1829 278 1142 15 489 447 49 2456 645 74 1 464 100 157 982 6 448 728 3340 181 49 161 178 48 169 1710 295 373 121 36 240 57 1225 596 0 1064 1400
EU791051.1.1505 807 110 87 45 0 0 0 1 2 1 134 1 47 0 0 2 142 418 0 253 1 0 0 0 248 99 0 114 97 0 71 24 0 41 73 908 0 302 293 566 439 426 227 291 3115 330 0 543 1 933 37 446 364 1072
EU791168.1.1511 32 29 82 597 36 208 91 306 21 64 144 58 155 117 143 111 69 539 142 403 88 233 104 128 362 73 185 25 132 441 56 21 14 102 39 436 189 3 1 14 0 82 411 274 112 24 106 4 63 186 165 7 605 164
EF406783.1.1508 100 96 213 1631 94 582 223 851 34 149 439 127 510 268 388 289 170 1533 288 1419 206 743 244 299 1077 239 512 107 298 1142 153 68 28 252 109 1202 538 9 4 41 8 252 1565 720 330 60 197 9 123 468 417 11 1811 622
EU791091.1.1520 32 20 36 482 9 125 69 158 17 35 89 61 98 46 81 38 61 201 85 126 38 155 83 38 255 23 98 33 100 189 29 14 6 83 26 303 152 6 2 5 1 64 219 172 108 12 87 8 35 78 107 2 434 88
AB702764.1.1495 4 1286 3166 1 910 1 1840 4 5 251 1802 88 4 334 3 317 2564 3 1051 8 5 6 2 915 1 2853 3816 628 862 1 1861 1 35 3311 1511 361 0 529 3 4073 2311 2174 2008 988 2 427 1464 3365 1 2707 954 2911 2341 0
EU622719.1.1482 2 9 23 0 8 0 173 0 0 3 0 1 2 0 18 8 61 2 2 0 0 0 1 543 4 1550 0 75 107 0 411 63 7 1 167 0 0 1967 805 0 1154 876 0 2829 0 530 1 437 1 0 1 2509 0 0
New.ReferenceOTU235 10 0 0 1 74 1 17 4 4 55 0 2 6 7 108 31 0 0 21 0 0 1 0 8 0 0 4 0 0 0 0 517 70 0 1 0 0 0 0 0 0 0 0 0 0 0 37 0 14 0 0 0 0 0
New.ReferenceOTU172 114 1 0 1 434 3 167 36 23 280 0 58 36 23 827 188 0 0 266 0 0 0 0 33 0 0 39 0 0 0 0 3768 486 0 0 0 11 0 1 0 0 0 0 0 0 0 347 1 100 0 0 0 0 0
MOYD01000062.205.1704 138 0 0 0 417 2 217 52 31 336 0 63 55 54 1152 258 0 0 386 0 0 0 0 41 0 0 53 0 0 0 0 4555 689 0 1 1 20 0 0 0 0 0 0 0 0 0 449 0 172 0 0 0 0 0
AB606394.1.1473 169 41 0 0 18 0 398 0 185 163 218 645 0 31 0 76 110 67 29 1 44 0 112 641 0 32 0 30 0 471 600 0 37 69 8 8 0 590 967 163 348 645 22 0 794 148 561 93 364 732 369 0 32 73
EU451957.1.1393 24 1 17 1 16 0 27 15 3 3 5 1 2 27 18 55 8 27 6 144 5 6 23 31 129 43 27 14 8 20 96 24 0 14 29 19 2 6 47 21 20 88 7 18 48 8 11 116 1 487 12 13 8 185
KM244845.1.1500 135 0 1 144 213 24 2 1999 1385 4 329 16 57 395 2 341 32 1982 1 929 824 1 168 30 280 0 7 0 756 1497 1 1 0 0 1 0 14 0 0 0 0 0 291 4 4 1 34 0 71 0 2 0 4 726
ASTF01000015.433637.435168 3 142 7 2 1 1474 785 494 1 53 10 104 29 4 810 1 118 1 59 5 19 38 565 128 28 26 2 44 16 251 1 7 320 271 46 0 355 6 8 8 0 2 11 12 0 5 19 5 3 9 104 219 6 1
EF406503.1.1505 0 78 3 8 0 3 0 0 0 6 544 0 0 0 0 0 70 0 1 0 0 2 0 0 3 3 1 19 2 0 0 0 3 0 1 0 1 1 1 0 0 0 665 1 0 0 0 2 2 0 0 284 0 1
AB606242.1.1511 0 0 0 0 2 176 0 1 28 0 0 0 0 3 15 0 260 559 2 0 79 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 13 0 98 0 0 0 0 121
AB627560.1.1532 81 1 179 114 8 39 3 27 19 26 153 22 1 16 127 14 100 40 7 144 5 8 24 2 558 2 4 87 128 1 54 2 13 5 125 206 340 0 0 178 0 30 92 149 88 1 26 461 212 47 13 77 19 6
FJ879725.1.1573 2 12 10 4 89 10 28 2 0 49 15 31 0 66 20 96 6 3 0 5 0 0 40 14 1 2 17 389 6 37 3 1 122 74 3 2 0 2 105 3 0 6 2 3 0 13 34 16 3 2 33 433 2 5
AB969479.1.1526 0 1 1 0 0 6 30 12 25 0 77 1 0 2 10 0 0 77 34 0 39 0 386 21 0 0 0 0 0 436 18 0 3 0 84 0 0 0 222 247 93 0 0 0 27 0 41 1 18 340 3 0 11 82
HM124124.1.1484 0 1 0 0 308 0 1209 1 11 0 0 6 1 1630 0 15 1 0 0 0 3611 0 2837 394 1 372 0 1 2 937 0 0 0 1 0 1 0 1338 0 2 0 22 0 0 0 23 627 0 16 0 0 11 0 2
New.ReferenceOTU510 0 134 109 0 0 0 3 0 2 0 14 0 0 0 0 0 3 53 1 0 0 0 0 0 2 4 0 50 0 0 1 0 0 0 470 7 0 3 0 20 0 3 13 2 0 1 0 40 1 0 0 0 118 0
AB606270.1.1503 0 262 207 0 0 0 3 0 7 0 13 0 0 0 0 0 2 50 1 0 0 0 0 0 1 10 0 107 1 0 4 0 2 0 659 12 0 1 0 23 0 3 28 0 0 0 0 110 0 0 0 0 267 0
EF604541.1.1490 0 573 76 54 36 0 0 0 1 1 41 0 0 1 0 0 606 27 1 0 2 0 3 0 9 326 0 8 0 1 2 1 0 7 505 65 0 2 0 495 0 97 113 0 0 127 0 35 1 4 1 0 6 3
EU504917.1.1400 54 274 1 1 0 6 2 48 49 1 265 10 369 2 14 0 310 10 224 14 5 1 0 0 1 32 4 181 98 0 0 221 11 6 0 2 25 377 9 0 3 706 15 277 58 1239 1 4 156 0 37 79 0 40
FJ879561.1.1497 2 623 0 0 0 0 1 0 0 1 672 0 0 0 0 0 735 0 0 0 0 0 0 0 0 0 0 433 0 0 0 0 0 0 0 0 0 0 1 0 0 5 42 0 0 0 0 0 0 1 1 221 0 0
EF406575.1.1505 87 360 2 0 0 0 0 1 1 0 376 0 401 0 1 1 456 15 113 32 0 2 0 0 1 35 0 244 2 2 0 256 1 1 0 4 8 319 25 2 4 689 21 7 44 1239 0 2 7 0 2 156 0 49
AB702782.1.1499 0 4 5 0 5 0 29 14 13 0 5 0 0 2 17 0 13 99 0 0 0 0 0 0 525 0 0 366 1161 1 3 0 0 0 2 0 0 18 2 0 0 3 76 177 10 74 36 0 3 1 3 8 7 3
AB606327.1.1485 6 71 54 2 4805 1 4 25 193 0 506 7 0 35 4 22 543 2 3 1 185 7 662 5 2060 3 0 8 0 192 27 0 2 1478 374 44 4 0 0 116 0 950 1321 1 24 187 33 15 10 0 554 0 0 1
AB622844.1.1532 2 13 4 0 438 0 2 2 18 0 41 2 2 5 1 2 44 0 0 6 11 2 55 0 171 4 0 0 1 17 4 0 0 99 37 4 0 0 0 9 1 93 129 0 0 16 3 1 0 0 42 0 0 0
AB622841.1.1531 0 12 14 0 772 0 0 1 32 0 82 2 0 4 1 3 94 2 0 0 22 0 112 1 346 0 0 0 0 24 6 0 0 227 43 5 0 0 0 19 0 198 220 0 7 18 2 4 0 0 112 0 0 0

5 Taxonomic summary

5.1 Bar plots in phylum level

Regroup together pre vs post stroke samples and normalize number of reads in each group using median sequencing depth.

Use color according to phylum. Do separate panels Stroke and Sex_age.

ps.ng.tax_most_copied <- data.table::copy(ps.ng.tax_most_)
# FITTING7: regulate the bar height if it has replicates
otu_table(ps.ng.tax_most_)[, c("1")] <- otu_table(ps.ng.tax_most_)[, c("1")]/6
otu_table(ps.ng.tax_most_)[, c("2")] <- otu_table(ps.ng.tax_most_)[, c("2")]/6
otu_table(ps.ng.tax_most_)[, c("4")] <- otu_table(ps.ng.tax_most_)[, c("4")]/6
otu_table(ps.ng.tax_most_)[, c("5")] <- otu_table(ps.ng.tax_most_)[, c("5")]/6
otu_table(ps.ng.tax_most_)[, c("6")] <- otu_table(ps.ng.tax_most_)[, c("6")]/6
otu_table(ps.ng.tax_most_)[, c("7")] <- otu_table(ps.ng.tax_most_)[, c("7")]/6

otu_table(ps.ng.tax_most_)[, c("8")] <- otu_table(ps.ng.tax_most_)[, c("8")]/7
otu_table(ps.ng.tax_most_)[, c("9")] <- otu_table(ps.ng.tax_most_)[, c("9")]/7
otu_table(ps.ng.tax_most_)[, c("10")] <- otu_table(ps.ng.tax_most_)[, c("10")]/7
otu_table(ps.ng.tax_most_)[, c("11")] <- otu_table(ps.ng.tax_most_)[, c("11")]/7
otu_table(ps.ng.tax_most_)[, c("12")] <- otu_table(ps.ng.tax_most_)[, c("12")]/7
otu_table(ps.ng.tax_most_)[, c("13")] <- otu_table(ps.ng.tax_most_)[, c("13")]/7
otu_table(ps.ng.tax_most_)[, c("14")] <- otu_table(ps.ng.tax_most_)[, c("14")]/7

otu_table(ps.ng.tax_most_)[, c("15")] <- otu_table(ps.ng.tax_most_)[, c("15")]/6
otu_table(ps.ng.tax_most_)[, c("16")] <- otu_table(ps.ng.tax_most_)[, c("16")]/6
otu_table(ps.ng.tax_most_)[, c("17")] <- otu_table(ps.ng.tax_most_)[, c("17")]/6
otu_table(ps.ng.tax_most_)[, c("18")] <- otu_table(ps.ng.tax_most_)[, c("18")]/6
otu_table(ps.ng.tax_most_)[, c("19")] <- otu_table(ps.ng.tax_most_)[, c("19")]/6
otu_table(ps.ng.tax_most_)[, c("20")] <- otu_table(ps.ng.tax_most_)[, c("20")]/6

otu_table(ps.ng.tax_most_)[, c("21")] <- otu_table(ps.ng.tax_most_)[, c("21")]/8
otu_table(ps.ng.tax_most_)[, c("22")] <- otu_table(ps.ng.tax_most_)[, c("22")]/8
otu_table(ps.ng.tax_most_)[, c("23")] <- otu_table(ps.ng.tax_most_)[, c("23")]/8
otu_table(ps.ng.tax_most_)[, c("24")] <- otu_table(ps.ng.tax_most_)[, c("24")]/8
otu_table(ps.ng.tax_most_)[, c("25")] <- otu_table(ps.ng.tax_most_)[, c("25")]/8
otu_table(ps.ng.tax_most_)[, c("26")] <- otu_table(ps.ng.tax_most_)[, c("26")]/8
otu_table(ps.ng.tax_most_)[, c("27")] <- otu_table(ps.ng.tax_most_)[, c("27")]/8
otu_table(ps.ng.tax_most_)[, c("28")] <- otu_table(ps.ng.tax_most_)[, c("28")]/8

otu_table(ps.ng.tax_most_)[, c("29")] <- otu_table(ps.ng.tax_most_)[, c("29")]/4
otu_table(ps.ng.tax_most_)[, c("30")] <- otu_table(ps.ng.tax_most_)[, c("30")]/4
otu_table(ps.ng.tax_most_)[, c("31")] <- otu_table(ps.ng.tax_most_)[, c("31")]/4
otu_table(ps.ng.tax_most_)[, c("32")] <- otu_table(ps.ng.tax_most_)[, c("32")]/4

otu_table(ps.ng.tax_most_)[, c("33")] <- otu_table(ps.ng.tax_most_)[, c("33")]/7
otu_table(ps.ng.tax_most_)[, c("34")] <- otu_table(ps.ng.tax_most_)[, c("34")]/7
otu_table(ps.ng.tax_most_)[, c("35")] <- otu_table(ps.ng.tax_most_)[, c("35")]/7
otu_table(ps.ng.tax_most_)[, c("36")] <- otu_table(ps.ng.tax_most_)[, c("36")]/7
otu_table(ps.ng.tax_most_)[, c("37")] <- otu_table(ps.ng.tax_most_)[, c("37")]/7
otu_table(ps.ng.tax_most_)[, c("38")] <- otu_table(ps.ng.tax_most_)[, c("38")]/7
otu_table(ps.ng.tax_most_)[, c("39")] <- otu_table(ps.ng.tax_most_)[, c("39")]/7

otu_table(ps.ng.tax_most_)[, c("40")] <- otu_table(ps.ng.tax_most_)[, c("40")]/7
otu_table(ps.ng.tax_most_)[, c("41")] <- otu_table(ps.ng.tax_most_)[, c("41")]/7
otu_table(ps.ng.tax_most_)[, c("42")] <- otu_table(ps.ng.tax_most_)[, c("42")]/7
otu_table(ps.ng.tax_most_)[, c("43")] <- otu_table(ps.ng.tax_most_)[, c("43")]/7
otu_table(ps.ng.tax_most_)[, c("44")] <- otu_table(ps.ng.tax_most_)[, c("44")]/7
otu_table(ps.ng.tax_most_)[, c("45")] <- otu_table(ps.ng.tax_most_)[, c("45")]/7
otu_table(ps.ng.tax_most_)[, c("46")] <- otu_table(ps.ng.tax_most_)[, c("46")]/7

otu_table(ps.ng.tax_most_)[, c("47")] <- otu_table(ps.ng.tax_most_)[, c("47")]/9
otu_table(ps.ng.tax_most_)[, c("48")] <- otu_table(ps.ng.tax_most_)[, c("48")]/9
otu_table(ps.ng.tax_most_)[, c("49")] <- otu_table(ps.ng.tax_most_)[, c("49")]/9
otu_table(ps.ng.tax_most_)[, c("50")] <- otu_table(ps.ng.tax_most_)[, c("50")]/9
otu_table(ps.ng.tax_most_)[, c("51")] <- otu_table(ps.ng.tax_most_)[, c("51")]/9
otu_table(ps.ng.tax_most_)[, c("52")] <- otu_table(ps.ng.tax_most_)[, c("52")]/9
otu_table(ps.ng.tax_most_)[, c("53")] <- otu_table(ps.ng.tax_most_)[, c("53")]/9
otu_table(ps.ng.tax_most_)[, c("54")] <- otu_table(ps.ng.tax_most_)[, c("54")]/9
otu_table(ps.ng.tax_most_)[, c("55")] <- otu_table(ps.ng.tax_most_)[, c("55")]/9


# plot_bar(ps.ng.tax_most_swab_, x='Phylum', fill = 'Phylum', facet_grid =
# Patient~RoundDay) + geom_bar(aes(color=Phylum, fill=Phylum), stat='identity',
# position='stack') + theme(axis.text = element_text(size = theme.size,
# colour='black'))
plot_bar(ps.ng.tax_most_, x = "Phylum", fill = "Phylum", facet_grid = pre_post_stroke ~
    Sex_age) + geom_bar(aes(), stat = "identity", position = "stack") + scale_fill_manual(values = c("darkblue",
    "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue",
    "darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1",
    "royalblue4", "darksalmon", "darkblue", "royalblue4", "dodgerblue3", "steelblue1",
    "lightskyblue", "darkseagreen", "darkgoldenrod1", "darkseagreen", "darkorchid",
    "darkolivegreen1", "brown1", "darkorange1", "cyan1", "darkgrey")) + theme(axis.text = element_text(size = 5,
    colour = "black"), axis.text.x = element_blank(), axis.ticks = element_blank()) +
    theme(legend.position = "bottom") + guides(fill = guide_legend(nrow = 2))

5.2 Bar plots in class level

Regroup together pre vs post stroke samples and normalize number of reads in each group using median sequencing depth.

Use color according to class. Do separate panels Stroke and Sex_age.

5.3 Bar plots in order level

Regroup together pre vs post stroke and normalize number of reads in each group using median sequencing depth.

Use color according to order. Do separate panels Stroke and Sex_age.

5.4 Bar plots in family level

Regroup together pre vs post stroke samples and normalize number of reads in each group using median sequencing depth.

Use color according to family. Do separate panels Stroke and Sex_age.

6 Alpha diversity

Plot Chao1 richness estimator, Observed OTUs, Shannon index, and Phylogenetic diversity. Regroup together samples from the same group.

Group Chao-1 Shannon OTU Phylogenetic Diversity
Group1 6349.769 7.002665 2751 83.66721
Group1 7285.497 7.355100 2737 94.96087
Group1 5495.606 7.178491 2461 83.56788
Group1 6161.841 7.097847 2511 85.58772
Group1 5443.752 6.824459 2434 84.34122
Group1 4840.408 6.776871 2461 80.72348
Group2 7366.408 7.815119 3197 102.90263
Group2 6274.827 7.741948 2890 90.85852
Group2 5793.308 8.075933 2865 92.32601
Group2 5984.518 7.319433 2578 90.46149
Group2 5708.705 7.851736 2824 93.36881
Group2 6109.767 8.101662 2966 98.44462
Group2 6369.752 7.118622 2869 95.11685
Group3 6940.387 7.741135 3059 97.76165
Group3 6098.004 6.436854 2835 102.67316
Group3 6497.394 7.850194 2913 98.10649
Group3 5469.070 6.699081 2449 82.04387
Group3 6645.847 7.682096 2841 92.82798
Group3 6637.343 8.223364 3028 91.43127
Group4 6951.096 7.754592 3221 102.24768
Group4 6474.659 7.199445 2761 99.42394
Group4 6675.297 7.917291 3047 96.83298
Group4 6247.904 7.486238 2935 92.08430
Group4 6284.602 7.937227 3073 104.16131
Group4 5071.120 7.496080 2578 81.15671
Group4 7180.224 8.128899 3195 105.48484
Group4 6861.665 8.148061 3102 90.74225
Group5 6395.912 6.601610 2610 90.63905
Group5 6268.760 6.807457 2664 90.49587
Group5 5597.646 6.368809 2493 84.34328
Group5 6628.257 7.639552 2972 96.22455
Group6 6300.821 7.445990 2832 99.36449
Group6 6444.541 7.421449 2884 98.71807
Group6 6947.157 7.091146 2687 100.62399
Group6 5410.097 6.866969 2584 90.80504
Group6 5953.121 6.937662 2599 95.33328
Group6 6462.002 7.897205 3000 95.28576
Group6 6937.500 7.726382 2805 96.43301
Group7 6512.715 7.595379 2754 85.83723
Group7 5963.597 7.406097 2772 92.08358
Group7 6399.684 6.788279 2636 88.25698
Group7 4851.865 6.066666 2044 78.10996
Group7 5618.788 6.274673 2345 89.33655
Group7 5485.123 7.549293 2527 81.88175
Group7 6661.582 7.828921 2987 99.76522
Group8 5147.719 7.330667 2421 88.32128
Group8 7077.365 7.990243 3085 96.26960
Group8 7017.728 7.668941 3149 107.96902
Group8 6990.919 8.152600 3202 105.21691
Group8 6067.818 7.284291 2705 97.74334
Group8 7205.626 7.463663 3060 106.55682
Group8 7038.728 7.969380 3170 104.27469
Group8 5821.239 7.778258 2727 85.05796
Group8 4878.500 7.002098 2147 67.58582
.y. group1 group2 p p.adj p.format p.signif method
Shannon Group1 Group2 0.0022194 0.060 0.00222 ** T-test
Shannon Group1 Group3 0.2335726 1.000 0.23357 ns T-test
Shannon Group1 Group4 0.0004373 0.012 0.00044 *** T-test
Shannon Group1 Group5 0.5625942 1.000 0.56259 ns T-test
Shannon Group1 Group6 0.1132840 1.000 0.11328 ns T-test
Shannon Group1 Group7 0.9072871 1.000 0.90729 ns T-test
Shannon Group1 Group8 0.0023776 0.062 0.00238 ** T-test
Shannon Group2 Group3 0.4111307 1.000 0.41113 ns T-test
Shannon Group2 Group4 0.8285950 1.000 0.82859 ns T-test
Shannon Group2 Group5 0.0425835 1.000 0.04258
T-test
Shannon Group2 Group6 0.0895027 1.000 0.08950 ns T-test
Shannon Group2 Group7 0.0583335 1.000 0.05833 ns T-test
Shannon Group2 Group8 0.6382240 1.000 0.63822 ns T-test
Shannon Group3 Group4 0.3405858 1.000 0.34059 ns T-test
Shannon Group3 Group5 0.1831506 1.000 0.18315 ns T-test
Shannon Group3 Group6 0.7707906 1.000 0.77079 ns T-test
Shannon Group3 Group7 0.3689790 1.000 0.36898 ns T-test
Shannon Group3 Group8 0.5695443 1.000 0.56954 ns T-test
Shannon Group4 Group5 0.0379492 0.950 0.03795
T-test
Shannon Group4 Group6 0.0490209 1.000 0.04902
T-test
Shannon Group4 Group7 0.0436902 1.000 0.04369
T-test
Shannon Group4 Group8 0.4628546 1.000 0.46285 ns T-test
Shannon Group5 Group6 0.1845088 1.000 0.18451 ns T-test
Shannon Group5 Group7 0.5837050 1.000 0.58370 ns T-test
Shannon Group5 Group8 0.0595454 1.000 0.05955 ns T-test
Shannon Group6 Group7 0.3969530 1.000 0.39695 ns T-test
Shannon Group6 Group8 0.1683518 1.000 0.16835 ns T-test
Shannon Group7 Group8 0.0917359 1.000 0.09174 ns T-test
div_df_melt <- reshape2::melt(div.df2)
#head(div_df_melt)

#https://plot.ly/r/box-plots/#horizontal-boxplot
#http://www.sthda.com/english/wiki/print.php?id=177
#https://rpkgs.datanovia.com/ggpubr/reference/as_ggplot.html
#http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/82-ggplot2-easy-way-to-change-graphical-parameters/
#https://plot.ly/r/box-plots/#horizontal-boxplot
#library("gridExtra")
#par(mfrow=c(4,1))
p <- ggboxplot(div_df_melt, x = "Group", y = "value",
              facet.by = "variable", 
              scales = "free",
              width = 0.5,
              fill = "gray", legend= "right")
#ggpar(p, xlab = FALSE, ylab = FALSE)
lev <- levels(factor(div_df_melt$Group)) # get the variables
#FITTING6: delete H47(1) in lev
#lev <- lev[-c(3)]
# make a pairwise list that we want to compare.
#my_stat_compare_means
#https://stackoverflow.com/questions/47839988/indicating-significance-with-ggplot2-in-a-boxplot-with-multiple-groups
L.pairs <- combn(seq_along(lev), 2, simplify = FALSE, FUN = function(i) lev[i]) #%>% filter(p.signif != "ns")
my_stat_compare_means  <- function (mapping = NULL, data = NULL, method = NULL, paired = FALSE, 
    method.args = list(), ref.group = NULL, comparisons = NULL, 
    hide.ns = FALSE, label.sep = ", ", label = NULL, label.x.npc = "left", 
    label.y.npc = "top", label.x = NULL, label.y = NULL, tip.length = 0.03, 
    symnum.args = list(), geom = "text", position = "identity", 
    na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) 
{
    if (!is.null(comparisons)) {
        method.info <- ggpubr:::.method_info(method)
        method <- method.info$method
        method.args <- ggpubr:::.add_item(method.args, paired = paired)
        if (method == "wilcox.test") 
            method.args$exact <- FALSE
        pms <- list(...)
        size <- ifelse(is.null(pms$size), 0.3, pms$size)
        color <- ifelse(is.null(pms$color), "black", pms$color)
        map_signif_level <- FALSE
        if (is.null(label)) 
            label <- "p.format"
        if (ggpubr:::.is_p.signif_in_mapping(mapping) | (label %in% "p.signif")) {
            if (ggpubr:::.is_empty(symnum.args)) {
                map_signif_level <- c(`****` = 1e-04, `***` = 0.001, 
                  `**` = 0.01, `*` = 0.05, ns = 1)
            } else {
               map_signif_level <- symnum.args
            } 
            if (hide.ns) 
                names(map_signif_level)[5] <- " "
        }
        step_increase <- ifelse(is.null(label.y), 0.12, 0)
        ggsignif::geom_signif(comparisons = comparisons, y_position = label.y, 
            test = method, test.args = method.args, step_increase = step_increase, 
            size = size, color = color, map_signif_level = map_signif_level, 
            tip_length = tip.length, data = data)
    } else {
        mapping <- ggpubr:::.update_mapping(mapping, label)
        layer(stat = StatCompareMeans, data = data, mapping = mapping, 
            geom = geom, position = position, show.legend = show.legend, 
            inherit.aes = inherit.aes, params = list(label.x.npc = label.x.npc, 
                label.y.npc = label.y.npc, label.x = label.x, 
                label.y = label.y, label.sep = label.sep, method = method, 
                method.args = method.args, paired = paired, ref.group = ref.group, 
                symnum.args = symnum.args, hide.ns = hide.ns, 
                na.rm = na.rm, ...))
    }
}

p2 <- p + 
stat_compare_means(
  method="t.test",
  #comparisons = L.pairs,    # L.pairs 
  comparisons = list(c("Group1", "Group2"), c("Group1", "Group3"), c("Group1", "Group4"), c("Group1", "Group6"), c("Group1", "Group8"), c("Group2", "Group5"),c("Group4", "Group5"),c("Group4", "Group6"),c("Group4", "Group7"),c("Group6", "Group7")), 
  label = "p.signif",
  symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05, 1), symbols = c("****", "***", "**", "*", "ns")),
  #symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05), symbols = c("****", "***", "**", "*")),
)
[1] FALSE
[1] FALSE
Alpha diversity

Alpha diversity

Alpha diversity by pre_post_stroke: the alpha diversity of the post stroke samples is significantly different from that of the pre stroke samples.

.y. group1 group2 p p.adj p.format p.signif method
Shannon post pre 0.0011532 0.0012 0.0012 ** T-test
div_df_melt <- reshape2::melt(div.df2)
p <- ggboxplot(div_df_melt, x = "pre_post_stroke", y = "value",
              facet.by = "variable", 
              scales = "free",
              width = 0.5,
              fill = "gray", legend= "right")
lev <- levels(factor(div_df_melt$pre_post_stroke))
L.pairs <- combn(seq_along(lev), 2, simplify = FALSE, FUN = function(i) lev[i])
my_stat_compare_means  <- function (mapping = NULL, data = NULL, method = NULL, paired = FALSE, 
    method.args = list(), ref.group = NULL, comparisons = NULL, 
    hide.ns = FALSE, label.sep = ", ", label = NULL, label.x.npc = "left", 
    label.y.npc = "top", label.x = NULL, label.y = NULL, tip.length = 0.03, 
    symnum.args = list(), geom = "text", position = "identity", 
    na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) 
{
    if (!is.null(comparisons)) {
        method.info <- ggpubr:::.method_info(method)
        method <- method.info$method
        method.args <- ggpubr:::.add_item(method.args, paired = paired)
        if (method == "wilcox.test") 
            method.args$exact <- FALSE
        pms <- list(...)
        size <- ifelse(is.null(pms$size), 0.3, pms$size)
        color <- ifelse(is.null(pms$color), "black", pms$color)
        map_signif_level <- FALSE
        if (is.null(label)) 
            label <- "p.format"
        if (ggpubr:::.is_p.signif_in_mapping(mapping) | (label %in% "p.signif")) {
            if (ggpubr:::.is_empty(symnum.args)) {
                map_signif_level <- c(`****` = 1e-04, `***` = 0.001, 
                  `**` = 0.01, `*` = 0.05, ns = 1)
            } else {
               map_signif_level <- symnum.args
            } 
            if (hide.ns) 
                names(map_signif_level)[5] <- " "
        }
        step_increase <- ifelse(is.null(label.y), 0.12, 0)
        ggsignif::geom_signif(comparisons = comparisons, y_position = label.y, 
            test = method, test.args = method.args, step_increase = step_increase, 
            size = size, color = color, map_signif_level = map_signif_level, 
            tip_length = tip.length, data = data)
    } else {
        mapping <- ggpubr:::.update_mapping(mapping, label)
        layer(stat = StatCompareMeans, data = data, mapping = mapping, 
            geom = geom, position = position, show.legend = show.legend, 
            inherit.aes = inherit.aes, params = list(label.x.npc = label.x.npc, 
                label.y.npc = label.y.npc, label.x = label.x, 
                label.y = label.y, label.sep = label.sep, method = method, 
                method.args = method.args, paired = paired, ref.group = ref.group, 
                symnum.args = symnum.args, hide.ns = hide.ns, 
                na.rm = na.rm, ...))
    }
}
p2 <- p + stat_compare_means(
  method="t.test",
  comparisons = L.pairs,    # L.pairs
  #CHANGE: 
  #comparisons = list(c("-", "21"), c("-", "28"),  c("00", "07"), c("00", "21"), c("00", "28")), 
  #comparisons = list(c("-", "021"), c("-", "028"),  c("000", "007"), c("000", "021"), c("000", "028")),
  label = "p.signif",
  symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05, 1), symbols = c("****", "***", "**", "*", "ns")),
  hide.ns = TRUE
)
[1] FALSE
Alpha diversity

Alpha diversity

  • Group1: f.aged and post
  • Group2: f.aged and pre
  • Group3: f.young and post
  • Group4: f.young and pre
  • Group5: m.aged and post
  • Group6: m.aged and pre
  • Group7: m.young and post
  • Group8: m.young and pre

Merge Group1 and Group5 as aged_post. Merge Group2 and Group6 as aged_pre. Merge Group3 and Group7 as young_post. Merge Group4 and Group8 as young_pre.

Then perform the statistical test between aged_post and aged_pre –> significant. the statistical test between young_post and young_pre –> not significant.

Group Chao-1 Shannon OTU Phylogenetic Diversity
aged.post 6349.769 7.002665 2751 83.66721
aged.post 7285.497 7.355100 2737 94.96087
aged.post 5495.606 7.178491 2461 83.56788
aged.post 6161.841 7.097847 2511 85.58772
aged.post 5443.752 6.824459 2434 84.34122
aged.post 4840.408 6.776871 2461 80.72348
aged.pre 7366.408 7.815119 3197 102.90263
aged.pre 6274.827 7.741948 2890 90.85852
aged.pre 5793.308 8.075933 2865 92.32601
aged.pre 5984.518 7.319433 2578 90.46149
aged.pre 5708.705 7.851736 2824 93.36881
aged.pre 6109.767 8.101662 2966 98.44462
aged.pre 6369.752 7.118622 2869 95.11685
young.post 6940.387 7.741135 3059 97.76165
young.post 6098.004 6.436854 2835 102.67316
young.post 6497.394 7.850194 2913 98.10649
young.post 5469.070 6.699081 2449 82.04387
young.post 6645.847 7.682096 2841 92.82798
young.post 6637.343 8.223364 3028 91.43127
young.pre 6951.096 7.754592 3221 102.24768
young.pre 6474.659 7.199445 2761 99.42394
young.pre 6675.297 7.917291 3047 96.83298
young.pre 6247.904 7.486238 2935 92.08430
young.pre 6284.602 7.937227 3073 104.16131
young.pre 5071.120 7.496080 2578 81.15671
young.pre 7180.224 8.128899 3195 105.48484
young.pre 6861.665 8.148061 3102 90.74225
aged.post 6395.912 6.601610 2610 90.63905
aged.post 6268.760 6.807457 2664 90.49587
aged.post 5597.646 6.368809 2493 84.34328
aged.post 6628.257 7.639552 2972 96.22455
aged.pre 6300.821 7.445990 2832 99.36449
aged.pre 6444.541 7.421449 2884 98.71807
aged.pre 6947.157 7.091146 2687 100.62399
aged.pre 5410.097 6.866969 2584 90.80504
aged.pre 5953.121 6.937662 2599 95.33328
aged.pre 6462.002 7.897205 3000 95.28576
aged.pre 6937.500 7.726382 2805 96.43301
young.post 6512.715 7.595379 2754 85.83723
young.post 5963.597 7.406097 2772 92.08358
young.post 6399.684 6.788279 2636 88.25698
young.post 4851.865 6.066666 2044 78.10996
young.post 5618.788 6.274673 2345 89.33655
young.post 5485.123 7.549293 2527 81.88175
young.post 6661.582 7.828921 2987 99.76522
young.pre 5147.719 7.330667 2421 88.32128
young.pre 7077.365 7.990243 3085 96.26960
young.pre 7017.728 7.668941 3149 107.96902
young.pre 6990.919 8.152600 3202 105.21691
young.pre 6067.818 7.284291 2705 97.74334
young.pre 7205.626 7.463663 3060 106.55682
young.pre 7038.728 7.969380 3170 104.27469
young.pre 5821.239 7.778258 2727 85.05796
young.pre 4878.500 7.002098 2147 67.58582
.y. group1 group2 p p.adj p.format p.signif method
Shannon aged.post aged.pre 0.0021984 0.01100 0.0022 ** T-test
Shannon aged.post young.post 0.2366071 0.64000 0.2366 ns T-test
Shannon aged.post young.pre 0.0000953 0.00057 9.5e-05 **** T-test
Shannon aged.pre young.post 0.2122282 0.64000 0.2122 ns T-test
Shannon aged.pre young.pre 0.2685374 0.64000 0.2685 ns T-test
Shannon young.post young.pre 0.0502394 0.20000 0.0502 ns T-test
div_df_melt <- reshape2::melt(div.df2)
#head(div_df_melt)
#https://plot.ly/r/box-plots/#horizontal-boxplot
#http://www.sthda.com/english/wiki/print.php?id=177
#https://rpkgs.datanovia.com/ggpubr/reference/as_ggplot.html
#http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/82-ggplot2-easy-way-to-change-graphical-parameters/
#https://plot.ly/r/box-plots/#horizontal-boxplot
#library("gridExtra")
#par(mfrow=c(4,1))
p <- ggboxplot(div_df_melt, x = "Group", y = "value",
              facet.by = "variable", 
              scales = "free",
              width = 0.5,
              fill = "gray", legend= "right")
#ggpar(p, xlab = FALSE, ylab = FALSE)
lev <- levels(factor(div_df_melt$Group)) # get the variables
#FITTING6: delete H47(1) in lev
#lev <- lev[-c(3)]
# make a pairwise list that we want to compare.
#my_stat_compare_means
#https://stackoverflow.com/questions/47839988/indicating-significance-with-ggplot2-in-a-boxplot-with-multiple-groups
L.pairs <- combn(seq_along(lev), 2, simplify = FALSE, FUN = function(i) lev[i]) #%>% filter(p.signif != "ns")
my_stat_compare_means  <- function (mapping = NULL, data = NULL, method = NULL, paired = FALSE, 
    method.args = list(), ref.group = NULL, comparisons = NULL, 
    hide.ns = FALSE, label.sep = ", ", label = NULL, label.x.npc = "left", 
    label.y.npc = "top", label.x = NULL, label.y = NULL, tip.length = 0.03, 
    symnum.args = list(), geom = "text", position = "identity", 
    na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) 
{
    if (!is.null(comparisons)) {
        method.info <- ggpubr:::.method_info(method)
        method <- method.info$method
        method.args <- ggpubr:::.add_item(method.args, paired = paired)
        if (method == "wilcox.test") 
            method.args$exact <- FALSE
        pms <- list(...)
        size <- ifelse(is.null(pms$size), 0.3, pms$size)
        color <- ifelse(is.null(pms$color), "black", pms$color)
        map_signif_level <- FALSE
        if (is.null(label)) 
            label <- "p.format"
        if (ggpubr:::.is_p.signif_in_mapping(mapping) | (label %in% "p.signif")) {
            if (ggpubr:::.is_empty(symnum.args)) {
                map_signif_level <- c(`****` = 1e-04, `***` = 0.001, 
                  `**` = 0.01, `*` = 0.05, ns = 1)
            } else {
               map_signif_level <- symnum.args
            } 
            if (hide.ns) 
                names(map_signif_level)[5] <- " "
        }
        step_increase <- ifelse(is.null(label.y), 0.12, 0)
        ggsignif::geom_signif(comparisons = comparisons, y_position = label.y, 
            test = method, test.args = method.args, step_increase = step_increase, 
            size = size, color = color, map_signif_level = map_signif_level, 
            tip_length = tip.length, data = data)
    } else {
        mapping <- ggpubr:::.update_mapping(mapping, label)
        layer(stat = StatCompareMeans, data = data, mapping = mapping, 
            geom = geom, position = position, show.legend = show.legend, 
            inherit.aes = inherit.aes, params = list(label.x.npc = label.x.npc, 
                label.y.npc = label.y.npc, label.x = label.x, 
                label.y = label.y, label.sep = label.sep, method = method, 
                method.args = method.args, paired = paired, ref.group = ref.group, 
                symnum.args = symnum.args, hide.ns = hide.ns, 
                na.rm = na.rm, ...))
    }
}
p2 <- p + 
stat_compare_means(
  method="t.test",
  #comparisons = L.pairs,    # L.pairs 
  comparisons = list(c("aged.pre", "aged.post"), c("young.pre", "young.post"), c("young.pre", "aged.post")), 
  label = "p.signif",
  symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05, 1), symbols = c("****", "***", "**", "*", "ns")),
  #symnum.args <- list(cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05), symbols = c("****", "***", "**", "*")),
)
[1] FALSE
Alpha diversity

Alpha diversity

7 Beta diversity

Do multivariate analysis based on unifrac distance and PCoA ordination.

# obtained beta diversity from distance matrices (DM) and PCoA plots (unifrac)
# https://forum.qiime2.org/t/tutorial-integrating-qiime2-and-r-for-data-visualization-and-analysis-using-qiime2r/4121?u=nicholas_bokulich
# https://www.rdocumentation.org/packages/qiimer/versions/0.9.4
# http://www.science.smith.edu/cmbs/wp-content/uploads/sites/36/2015/09/Tutorial-from-sample-to-analyzed-data-using-Qiime-for-analysis.pdf

# https://bioconductor.statistik.tu-dortmund.de/packages/3.8/bioc/manuals/phyloseq/man/phyloseq.pdf
# http://evomics.org/wp-content/uploads/2016/01/phyloseq-Lab-01-Answers.html#beta-diversity-distances

mp <- readRDS("./ps.ng.tax.rds")
mpra <- microbiome::transform(mp, "compositional")

# # Define taxa to keep.  keepTaxa = prevdt[(Prevalence >= 10 & TotalCounts >
# 3), TaxaID] # Define new object with relative abundance mpra =
# transform_sample_counts(mp, function(x) x / sum(x)) # Filter this new object
# mpraf = prune_taxa(keepTaxa, mpra) # Calculate distances #
# distance(esophagus, 'uunifrac') # Unweighted UniFrac # distance(esophagus,
# 'wunifrac') # weighted UniFrac DistUF = distance(mpra, method = 'wunifrac')


# IMPORT QIIME DISTANCE MATRIX TODO: !!!!!!!!!!!!!!!!!!!!!!!!!! HOW to
# construct a phyloseq::distance object?
# https://joey711.github.io/phyloseq/distance.html

# disttb = as.matrix(DistUF) disttb[1:10,1:10] DistUF2 <- as.dist(disttb)
# https://stackoverflow.com/questions/17875733/how-to-convert-a-symmetric-matrix-into-dist-object
# https://stackoverflow.com/questions/25845220/how-to-read-a-matrix-from-text-file-in-r
d <- read.table("./bdiv_even42434/weighted_unifrac_dm.txt", header = TRUE, sep = "\t",
    row.names = 1)
DistUF2 <- as.dist(d)

ordUF = ordinate(mpra, method = "PCoA", distance = DistUF2)
plot_scree(ordUF, "Scree Plot: Weighted UniFrac Multidimensional Scaling")

Beta diversity

Beta diversity

Beta diversity

Beta diversity

8 Differential abundance analysis

Differential abundance analysis aims to find the differences in the abundance of each taxa between two groups of samples, assigning a significance value to each comparison.

8.1 Group1 vs Group2

[1] "Intercept"              "Group_Group1_vs_Group2"
baseMean log2FoldChange lfcSE stat pvalue padj Domain Phylum Class Order Family Genus Species
EF603872.1.1478 12.26963 21.812585 2.7930949 7.809468 0.00e+00 0.0000000 D_0__Bacteria D_1__Firmicutes D_2__Clostridia D_3__Clostridiales D_4__Lachnospiraceae D_5__Lachnospiraceae NK4A136 group D_6__uncultured bacterium
New.ReferenceOTU132 19.71680 21.942035 2.8326453 7.746129 0.00e+00 0.0000000 D_0__Bacteria D_1__Firmicutes D_2__Clostridia D_3__Clostridiales D_4__Peptostreptococcaceae D_5__Romboutsia D_6__uncultured bacterium
MPKA01000044.182665.184200 77.50853 -3.630940 0.8749931 -4.149679 3.33e-05 0.0299107 D_0__Bacteria D_1__Firmicutes D_2__Erysipelotrichia D_3__Erysipelotrichales D_4__Erysipelotrichaceae D_5__Dubosiella D_6__Dubosiella newyorkensis
CCPS01000022.154.1916 65.95551 8.490080 1.7546207 4.838698 1.30e-06 0.0015655 D_0__Bacteria D_1__Proteobacteria D_2__Gammaproteobacteria D_3__Enterobacteriales D_4__Enterobacteriaceae D_5__Escherichia-Shigella NA
EU622719.1.1482 205.38847 9.137709 1.9088938 4.786913 1.70e-06 0.0017389 D_0__Bacteria D_1__Cyanobacteria D_2__Melainabacteria D_3__Gastranaerophilales D_4__uncultured bacterium D_5__uncultured bacterium D_6__uncultured bacterium

8.2 Group3 vs Group4

[1] "Intercept"              "Group_Group3_vs_Group4"
baseMean log2FoldChange lfcSE stat pvalue padj Domain Phylum Class Order Family Genus Species
HK240365.1.1492 1533.42683 9.540979 1.713161 5.569224 0 8.7e-06 D_0__Bacteria D_1__Verrucomicrobia D_2__Verrucomicrobiae D_3__Verrucomicrobiales D_4__Akkermansiaceae D_5__Akkermansia D_6__uncultured bacterium
EU510524.1.1382 28.46869 23.318939 3.004054 7.762489 0 0.0e+00 D_0__Bacteria D_1__Firmicutes D_2__Clostridia D_3__Clostridiales D_4__Ruminococcaceae D_5__Ruminococcaceae UCG-014 D_6__uncultured bacterium
New.ReferenceOTU132 35.95017 23.643776 3.003872 7.871100 0 0.0e+00 D_0__Bacteria D_1__Firmicutes D_2__Clostridia D_3__Clostridiales D_4__Peptostreptococcaceae D_5__Romboutsia D_6__uncultured bacterium
New.ReferenceOTU495 23.53857 23.048897 2.518147 9.153117 0 0.0e+00 Unassigned NA NA NA NA NA NA

8.3 Group5 vs Group6

[1] "Intercept"              "Group_Group5_vs_Group6"
baseMean log2FoldChange lfcSE stat pvalue padj Domain Phylum Class Order Family Genus Species
CCPS01000022.154.1916 72.4453 7.389872 1.6812744 4.395399 1.11e-05 0.0108856 D_0__Bacteria D_1__Proteobacteria D_2__Gammaproteobacteria D_3__Enterobacteriales D_4__Enterobacteriaceae D_5__Escherichia-Shigella NA
JQ083727.1.1489 530.9005 -4.174814 0.9088159 -4.593686 4.40e-06 0.0051448 D_0__Bacteria D_1__Bacteroidetes D_2__Bacteroidia D_3__Bacteroidales D_4__Rikenellaceae D_5__Alistipes D_6__uncultured bacterium

8.4 Group7 vs Group8

[1] "Intercept"              "Group_Group7_vs_Group8"
baseMean log2FoldChange lfcSE stat pvalue padj