gene_x 0 like s 623 view s
Tags: scripts, mutation, bacterium, variation, pipeline
import os
#######################################################
############### Snakefile Configuration ###############
#######################################################
configfile: "bacto-0.1.json"
SAMPLES, PAIRS, = glob_wildcards("raw_data/{sample}_{pair}.fastq.gz")
SAMPLES = list(set(SAMPLES))
#https://github.com/sanger-pathogens/ariba/wiki/Task%3A-getref
#reference_name is one of: argannot, card, megares, plasmidfinder, resfinder, srst2_argannot, vfdb_core, vfdb_full, virulencefinder
#VFDB: a reference database for bacterial virulence factors.
#VFDB 2016: hierarchical and refined dataset for big data analysis-10 years on"
#ariba getref vfdb_core vfdb_core
#mv vfdb_core.tsv db/vfdb_core/vfdb_core.tsv
#mv vfdb_core.fa db/vfdb_core/vfdb_core.fa
#MODIFIED: trimmomatic threads=6 doesn't work, add hard-coding {threads} as 12 in line 136
#DB = ["argannot", "card", "megares", "plasmidfinder", "resfinder", "srst2_argannot", "vfdb_core", "vfdb_full", "virulencefinder"]
DB = ["megares", "plasmidfinder", "resfinder", "srst2_argannot", "vfdb_core", "virulencefinder"]
#########################################################################
### Helper functions to access and construct commands from parameters ###
### in the configuration file for this Snakemake Pipeline ###
#########################################################################
def get_params_trailing():
return "TRAILING:" + str(config["trimmomatic"]["trailing"])
def get_params_leading():
return "LEADING:" + str(config["trimmomatic"]["leading"])
def get_params_minlen():
return "MINLEN:" + str(config["trimmomatic"]["min_len"])
def get_params_illuminaclip():
params = config["trimmomatic"]
return "ILLUMINACLIP:" + params["adapter_path"] + ":" \
+ str(params["seed_mismatch"]) + ":" + str(params["palindrome_threshold"]) \
+ ":" + str(params["clip_threshold"]) + ":" + str(params["min_adapter_length"]) \
+ ":" + str(params["keep_both_reads"])
def get_params_slidingwindow():
params = config["trimmomatic"]
return "SLIDINGWINDOW" + ":" + str(params["window_size"]) + ":" + str(params["window_quality"])
def get_genus_options(wildcards):
if config["prokka"]["genus"]:
cmd = "--usegenus --genus " + config["prokka"]["genus"]
else:
cmd = ""
return cmd
def get_reference_options(wildcards):
if config["quast"]["reference"]:
cmd = "-R " + config["quast"]["reference"]
else:
cmd = ""
return cmd
def get_forward_files(wildcards):
return "raw_data/{id}_R1.fastq.gz".format(id=wildcards.sample)
def get_reverse_files(wildcards):
return "raw_data/{id}_R2.fastq.gz".format(id=wildcards.sample)
##############################################
############### Consuming Rule ###############
##############################################
rule all:
input:
expand("kraken/{sample}_report.txt", sample=SAMPLES) if config["taxonomic_classifier"] else [],
#expand("trimmed/{sample}_trimmed_P_1.fastq.gz", sample=SAMPLES) if config["trim"] else [],
expand("fastqc/{sample}_fastqc.html", sample=SAMPLES) if config["fastqc"] else [],
expand("shovill/{sample}/contigs.fa", sample=SAMPLES) if config["typing_ariba"] else [],
expand("prokka/{sample}/{sample}.gbk", sample=SAMPLES) if config["typing_ariba"] else [],
#expand("mykrobe/{sample}/{sample}.json", sample=SAMPLES) if config["typing"] else [],
expand("ariba/{db}/{sample}.report.txt", db=DB, sample=SAMPLES) if config["typing_ariba"] else [],
expand("mlst/{sample}.mlst.txt", sample=SAMPLES) if config["assembly"] and config["typing_mlst"] else [],
"roary/gene_presence_absence.csv" if config["pangenome"] else [],
#"core_alignment/core_alignment_roary.fasta" if config["pangenome"] else [],
"variants/snippy.core.full.aln" if config["variants_calling"] else [],
"variants/snippy.core.aln" if config["variants_calling"] else [],
"fasttree/snippy.core.tree" if config["phylogeny_fasttree"] else [],
"raxml-ng/snippy.core.aln.raxml.bestTree" if config["phylogeny_raxml"] else [],
"gubbins/recomb.final_tree.tre" if config["recombination"] else [],
#conda install -c anaconda seaborn
#conda install libgcc
#conda install matplotlib biopython numpy pandas
#"fasttree_matrix.png"
########################################
############### QC Rules ###############
########################################
#if config["trim"]:
rule trimmomatic:
input:
fwd = get_forward_files,
rev = get_reverse_files
params:
illumina_clip=get_params_illuminaclip(),
sliding_window=get_params_slidingwindow(),
minlen=get_params_minlen(),
trailing=get_params_trailing(),
leading=get_params_leading()
output:
fwd_p="trimmed/{sample}_trimmed_P_1.fastq",
fwd_u="trimmed/{sample}_trimmed_U_1.fastq",
rev_p="trimmed/{sample}_trimmed_P_2.fastq",
rev_u="trimmed/{sample}_trimmed_U_2.fastq",
fwd_fq="fastq/{sample}_1.fastq",
rev_fq="fastq/{sample}_2.fastq"
threads:
config["trimmomatic"]["cpu"]
shell:
"trimmomatic PE -threads 12 {input.fwd} {input.rev} {output.fwd_p} {output.fwd_u}"
" {output.rev_p} {output.rev_u} {params.illumina_clip} {params.sliding_window} {params.leading}"
" {params.trailing} {params.minlen} && "
"ln -s $(pwd)/{output.fwd_p} $(pwd)/{output.fwd_fq} && ln -s $(pwd)/{output.rev_p} $(pwd)/{output.rev_fq} && "
"touch -h {output.fwd_fq} && touch -h {output.rev_fq}"
if config["fastqc"]:
rule fastqc:
input:
fwd_after="fastq/{sample}_1.fastq",
rev_after="fastq/{sample}_2.fastq"
output:
"fastqc/{sample}_1_fastqc.html",
"fastqc/{sample}_2_fastqc.html",
shell:
"fastqc --outdir fastqc {input.fwd_after}"
" && fastqc --outdir fastqc {input.rev_after}"
if config["taxonomic_classifier"]:
rule kraken:
input:
fwd_kra="fastq/{sample}_1.fastq",
rev_kra="fastq/{sample}_2.fastq"
params:
db=config["kraken"]["db_path"]
output:
tax="kraken/{sample}_tax.out",
report="kraken/{sample}_report.txt"
threads:
config["kraken"]["cpu"]
shell:
"cat {params.db}/database.* > /dev/null"
" && kraken --db {params.db} --threads {threads} --output {output.tax}"
" --fastq-input --paired {input.fwd_kra} {input.rev_kra}"
" && kraken-report --db {params.db} {output.tax} > {output.report}"
##############################################
########### Assembly and Annotation ##########
##############################################
if config["assembly"]:
rule shovill:
input:
forward = "fastq/{sample}_1.fastq",
reverse = "fastq/{sample}_2.fastq"
params:
spades = config["shovill"]["spades"],
cpu = config["shovill"]["cpu"],
depth = config["shovill"]["depth"],
other = config["shovill"]["other"]
output:
"shovill/{sample}/contigs.fa"
shell:
"shovill --outdir shovill/{wildcards.sample} --depth {params.depth} --force --R1 {input.forward} "
"--R2 {input.reverse} --mincov 1 --cpus {params.cpu} {params.other}"
#DEBUG: replace the tbl2asn with the newest version: https://github.com/tseemann/prokka/issues/139 --> SOLVED!
rule prokka:
input:
"shovill/{sample}/contigs.fa"
params:
cpu = config["prokka"]["cpu"],
evalue = config["prokka"]["evalue"],
genus_options = get_genus_options,
kingdom = config["prokka"]["kingdom"],
species = config["prokka"]["species"],
other = config["prokka"]["other"]
output:
"prokka/{sample}/{sample}.gbk",
"prokka/{sample}/{sample}.gff"
shell:
"""
prokka --force --outdir prokka/{wildcards.sample} --cpus {params.cpu} {params.genus_options} --kingdom {params.kingdom} --species {params.species} --addgenes --addmrna --prefix {wildcards.sample} --locustag {wildcards.sample} {params.other} {input} -hmm /mnt/h1/jhuang/REFs/TIGRfam_db/TIGRFAMs_15.0_HMM.LIB
"""
#tbl2asn -V b -a r10k -l paired-ends -M n -N 1 -y 'Annotated using prokka 1.12 from https://github.com/tseemann/prokka' -Z prokka\/HD31_2\/HD31_2\.err -i prokka\/HD31_2\/HD31_2\.fsa
#wget -O tbl2asn.gz ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/tbl2asn/linux64.tbl2asn.gz
#ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/tbl2asn/DOCUMENTATION/VERSIONS
#ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools/converters/by_program/tbl2asn/
#gunzip tbl2asn.gz
#chmod +x tbl2asn
#mv linux64.tbl2asn /home/jhuang/anaconda3/envs/bengal/bin/tbl2asn
#prokka 1.12 has problem!
#conda install prokka
if config["typing_mlst"]:
rule mlst:
input:
"shovill/{sample}/contigs.fa"
output:
"mlst/{sample}.mlst.txt"
shell:
"mlst {input} > {output}"
########################################
############### Typing #################
########################################
if config["typing_ariba"]:
# Warning. This is some black magic with the LD_LIBRARY_PATH
# to make MykrobePredictor work in Conda. MCCORTEX31 fails for
# ZLIB library dependency, which is present in CONDA_PREFIX/lib
# mykrobe predict --skeleton_dir ./mykrobe/HD31N3_S93 HD31N3_S93 staph --mccortex31_path /home/jhuang/anaconda3/envs/bengal/bin/mccortex31 -1 fastq/HD31N3_S93_1.fastq fastq/HD31N3_S93_2.fastq > mykrobe/HD31N3_S93/HD31N3_S93.json
#rule mykrobe_predictor:
# input:
# forward = "fastq/{sample}_1.fastq",
# reverse = "fastq/{sample}_2.fastq"
# params:
# species=config["mykrobe"]["species"]
# output:
# "mykrobe/{sample}/{sample}.json"
# conda:
# "envs/mykrobe.yaml"
# shell:
# #considering removing LIBRARY_PATH management from the code
# "LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH && "
# "echo $LD_LIBRARY_PATH && "
# "mykrobe predict --skeleton_dir ./mykrobe/{wildcards.sample} {wildcards.sample} {params.species} "
# "-1 {input.forward} {input.reverse} > {output}"
#rule ariba_prepareref:
# input:
# gene_dbs="db/{db}/{db}.fa",
# gene_tsv="db/{db}/{db}.tsv"
# output:
# gene_preps="db/{db}/prepareref.{db}"
# shell:
# "ariba prepareref -f {input.gene_dbs} -m {input.gene_tsv} {output.gene_preps}"
#argannot, card, megares, plasmidfinder, resfinder, srst2_argannot, vfdb_core, vfdb_full, virulencefinder
##ariba getref argannot argannot
##mkdir db/argannot
##mv argannot* db/argannot
##ariba prepareref -f db/argannot/argannot.fa -m db/argannot/argannot.tsv db/argannot/prepareref.argannot
##-------
##ariba getref card card
##mkdir db/card
##mv card* db/card
##ariba prepareref -f db/card/card.fa -m db/card/card.tsv db/card/prepareref.card
##-------
##ariba getref megares megares
##mkdir db/megares
##mv megares* db/megares
##ariba prepareref -f db/megares/megares.fa -m db/megares/megares.tsv db/megares/prepareref.megares
##-------
##ariba getref plasmidfinder plasmidfinder
##mkdir db/plasmidfinder
##mv plasmidfinder* db/plasmidfinder
##ariba prepareref -f db/plasmidfinder/plasmidfinder.fa -m db/plasmidfinder/plasmidfinder.tsv db/plasmidfinder/prepareref.plasmidfinder
##-------
##ariba prepareref -f db/resfinder/resfinder.fa -m db/resfinder/resfinder.tsv db/resfinder/prepareref.resfinder
##-------
##ariba getref srst2_argannot srst2_argannot
##mkdir db/srst2_argannot
##mv srst2_argannot* db/srst2_argannot
##ariba prepareref -f db/srst2_argannot/srst2_argannot.fa -m db/srst2_argannot/srst2_argannot.tsv db/srst2_argannot/prepareref.srst2_argannot
##-------
##ariba prepareref -f db/vfdb_core/vfdb_core.fa -m db/vfdb_core/vfdb_core.tsv db/vfdb_core/prepareref.vfdb_core
##-------
##ariba getref vfdb_full vfdb_full
##mkdir db/vfdb_full
##mv vfdb_full* db/vfdb_full
##ariba prepareref -f db/vfdb_full/vfdb_full.fa -m db/vfdb_full/vfdb_full.tsv db/vfdb_full/prepareref.vfdb_full
##-------
##ariba getref virulencefinder virulencefinder
##mkdir db/virulencefinder
##mv virulencefinder* db/virulencefinder
##ariba prepareref -f db/virulencefinder/virulencefinder.fa -m db/virulencefinder/virulencefinder.tsv db/virulencefinder/prepareref.virulencefinder
#
rule ariba:
input:
prepref = "db/{db}/prepareref.{db}",
forward = "fastq/{sample}_1.fastq",
reverse = "fastq/{sample}_2.fastq"
params:
outdir="ariba/{db}/{sample}",
report="ariba/{db}/{sample}/report.tsv"
output:
"ariba/{db}/{sample}.report.txt"
shell:
"ariba run --force {input.prepref} {input.forward} {input.reverse} {params.outdir} && "
"mv {params.report} {output}"
#####################################################
############### Pangenome using roary ###############
#####################################################
#http://sepsis-omics.github.io/tutorials/modules/roary/
if config["pangenome"]:
rule roary:
input:
expand("prokka/{sample}/{sample}.gff", sample=SAMPLES)
params:
core=config["roary"]["core"],
identity=config["roary"]["identity"],
other=config["roary"]["other"]
output:
"roary/gene_presence_absence.csv"
#"core_alignment/core_alignment_roary.fasta"
threads:
config["roary"]["cpu"]
shell:
#{threads} doesn't work, using hard-coding 15
"roary -p 15 -f ./roary -i {params.identity} -cd {params.core} -s -e -n -v {params.other} {input} && "
"mv roary_*/* ./roary && rm -rf ./roary_*"
#"cp roary/core_gene_alignment.aln core_alignment/core_alignment_roary.fasta"
#roary -e --mafft -p 8 *.gff
#roary -p 4 -f {params.outdir} -s -e -n -v {input} && touch {output}
########################################
############### Variants ###############
########################################
# Snippy in the environment requires the following:
# Install latest Python 3.5 freebayes=1.1.0=3 from BioConda
# Install bzip2 from Conda-Forge (add to channels in YAML)
# Then install standard Snippy from BioConda - for some reason the
# normal install does not work unless using this sequence of installations.
#TODO: using own refs from this STEP, using panphlan
if config["variants_calling"]:
rule snippy:
input:
forward="fastq/{sample}_1.fastq",
reverse="fastq/{sample}_2.fastq"
params:
outdir = "snippy/{sample}",
reference = config["snippy"]["reference"],
mincov = config["snippy"]["mincov"],
minfrac = config["snippy"]["minfrac"],
mapqual = config["snippy"]["mapqual"],
other = config["snippy"]["other"],
cpu = config["snippy"]["cpu"]
output:
"snippy/{sample}/{sample}.txt",
#"snippy/{sample}/{sample}.depth"
shell:
#removing LIBRARY_PATH management from the code
#"LD_LIBRARY_PATH=$CONDA_PREFIX/lib:$LD_LIBRARY_PATH && "
"snippy --force --outdir {params.outdir} --ref {params.reference} "
"--R1 {input.forward} --R2 {input.reverse} --cpus {params.cpu} "
"--mincov {params.mincov} --minfrac {params.minfrac} "
"--mapqual {params.mapqual} --prefix {wildcards.sample} {params.other} "
#"&& gzip -d snippy/{wildcards.sample}/{wildcards.sample}.depth.gz"
rule snippy_core:
input:
expand("snippy/{sample}/{sample}.txt", sample=SAMPLES)
params:
reference = config["snippy"]["reference"]
output:
"variants/snippy.core.full.aln",
"variants/snippy.core.aln"
shell:
"snippy-core --ref {params.reference} --prefix snippy.core snippy/* && "
"mv snippy.core.* variants/"
##########################################################################
########### Set Analysis based on variants/snippy.core.aln ###############
##########################################################################
if config["phylogeny_fasttree"]:
rule fasttree_snp:
input:
"variants/snippy.core.aln"
output:
"fasttree/snippy.core.tree"
shell:
"FastTree -gtr -nt {input} > {output}"
#DEBUG: threads of raxml_ng doesn't work!
if config["phylogeny_raxml"]:
rule raxml_ng:
input:
"variants/snippy.core.aln"
params:
model = config["raxml_ng"]["model"],
correction = config["raxml_ng"]["correction"],
bootstrap = config["raxml_ng"]["bootstrap"],
other = config["raxml_ng"]["other"]
output:
"raxml-ng/snippy.core.aln.raxml.bestTree"
threads:
config["raxml_ng"]["cpu"]
shell:
#{threads} doesn't work, using hard-coding 8
"raxml-ng --all --model {params.model}{params.correction} --prefix raxml-ng/snippy.core.aln --threads 8 "
"--msa {input} --bs-trees {params.bootstrap} {params.other}"
if config["recombination"]:
rule gubbins:
input:
"variants/snippy.core.aln"
params:
model = config["gubbins"]["model"],
prefix = "recomb",
tree_builder = config["gubbins"]["tree_builder"],
iterations = config["gubbins"]["iterations"],
min_snps = config["gubbins"]["min_snps"],
min_window_size = config["gubbins"]["min_window_size"],
max_window_size = config["gubbins"]["max_window_size"],
filter_percentage = config["gubbins"]["filter_percentage"],
other = config["gubbins"]["other"]
output:
"gubbins/recomb.final_tree.tre"
shell:
"run_gubbins.py --tree_builder {params.tree_builder} --iterations {params.iterations} --raxml_model "
"{params.model} --min_snps {params.min_snps} --min_window_size {params.min_window_size} "
"--max_window_size {params.max_window_size} --filter_percentage {params.filter_percentage} "
"--prefix {params.prefix} {params.other} {input} && mv {params.prefix}* gubbins"
#cp variants/snippy.core.full.aln variants/snippy.core.full.with_ref.aln
#cp variants/snippy.core.aln variants/snippy.core.with_ref.aln
#rule visualize_roary:
# input:
# tree = "fasttree/snippy.core.tree",
# csv = "roary/gene_presence_absence.csv",
# plot_script_fp = "local/roary_plots"
# output:
# "fasttree_matrix.png"
# shell:
# """
# python {input.plot_script_fp}/roary_plots.py {input.tree} {input.csv}
# mv pangenome_matrix.png matrix_fasttree.png
# """
rule visualize_roary_fasttree:
input:
tree = "fasttree/snippy.core.tree",
csv = "roary/gene_presence_absence.csv",
plot_script_fp = "local/roary_plots"
output:
"visualize.fasttree.done"
shell:
"""
python {input.plot_script_fp}/roary_plots.py {input.tree} {input.csv} && touch {output}
mv pangenome_matrix.png pangenome_matrix_fasttree.png
"""
rule visualize_roary_raxml:
input:
tree = "raxml-ng/snippy.core.aln.raxml.bestTree",
csv = "roary/gene_presence_absence.csv",
plot_script_fp = "local/roary_plots"
output:
"visualize.raxml.done"
shell:
"""
python {input.plot_script_fp}/roary_plots.py {input.tree} {input.csv} && touch {output}
mv pangenome_matrix.png pangenome_matrix_raxml.png
"""
rule visualize_roary_gubbins:
input:
tree = "gubbins/recomb.final_tree.tre",
csv = "roary/gene_presence_absence.csv",
plot_script_fp = "local/roary_plots"
output:
"visualize.gubbins.done"
shell:
"""
python {input.plot_script_fp}/roary_plots.py {input.tree} {input.csv} && touch {output}
mv pangenome_matrix.png pangenome_matrix_gubbins.png
"""
rule run_piggy:
input:
gff="prokka_gffs/",
roa="roary/"
output:
"piggy.done"
params:
outdir = "piggy"
shell:
"""
piggy -i {input.gff} -r {input.roa} -o {params.outdir} && touch {output}
"""
点赞本文的读者
还没有人对此文章表态
没有评论
Scaffolding and finishing an assembly with a reference genome
Call and merge SNP and Indel results from using two variant calling methods
© 2023 XGenes.com Impressum