Peak and Motif analyses in Promoters

gene_x 0 like s 570 view s

Tags: pipeline, ChIP-seq

  • ./1_generate_promoter_sequences.py gencode.v43.annotation.gtf.db

    1_generate_promoter_sequences.py

  • ./2_find_motifs_in_promoters.py

    2_find_motifs_in_promoters.py

  • generate peaks_and_motifs_in_promoters_with_LT_peak.xls

    Input file

    plot_peaks.py

    add_peaks_to_motifs.py

    peaks_and_motifs_in_promoters_with_LT_peak.xls

    peak_distribution

    #--3.1. generate peak_tss_distances.csv and peak_tss_distances.png
    python3 plot_peaks.py peaks_NHDF_.bed /home/jhuang/REFs/gencode.v43.annotation.gtf.db /ref/Homo_sapiens/UCSC/hg38/Sequence/WholeGenomeFasta/genome.fa
    python3 plot_peaks.py peaks_HEK293_.bed /home/jhuang/REFs/gencode.v43.annotation.gtf.db /ref/Homo_sapiens/UCSC/hg38/Sequence/WholeGenomeFasta/genome.fa
    python3 plot_peaks.py peaks_PFSK-1_.bed /home/jhuang/REFs/gencode.v43.annotation.gtf.db /ref/Homo_sapiens/UCSC/hg38/Sequence/WholeGenomeFasta/genome.fa
    python3 plot_peaks.py peaks_K331A_.bed /home/jhuang/REFs/gencode.v43.annotation.gtf.db /ref/Homo_sapiens/UCSC/hg38/Sequence/WholeGenomeFasta/genome.fa
    
    #--3.2. split data into two dataframe, one is in which PromoterID occurres in filtered_peaks$Closest.Gene..Ensemble.ID., another is the remaining
    #sed -i 's/[][]//g' motif_counts_positions.txt
    data <- read.table("motif_counts_positions.txt", sep="\t", header=TRUE, stringsAsFactors=FALSE)
    
    # Read the data
    peaks <- read.table("peak_tss_distances.txt", sep="\t", header=TRUE, stringsAsFactors=FALSE)
    # Filter the rows
    filtered_peaks <- subset(peaks, abs(`Distance.to.TSS`) <= 3000)
    # Print the filtered peaks
    write.table(filtered_peaks, file="filtered_peak_tss_distances.txt", sep="\t", row.names = FALSE)
    
    # Create a new data frame for rows in 'data' where the PromoterID is in filtered_peaks's Closest Gene (Ensemble ID)
    data_in_filtered <- data[data$PromoterID %in% filtered_peaks$Closest.Gene..Ensemble.ID., ]
    data_in_filtered$Motif_GRGGC_Center_Positions <- sapply(data_in_filtered$Motif_GRGGC_Center_Positions, toString)
    data_in_filtered$Motif_GCCYR_Center_Positions <- sapply(data_in_filtered$Motif_GCCYR_Center_Positions, toString)
    write.table(data_in_filtered, file="motifs_in_promoters_with_LT_peak.txt", sep="\t", row.names = FALSE)
    # Create another data frame for the remaining rows
    data_not_in_filtered <- data[!data$PromoterID %in% filtered_peaks$Closest.Gene..Ensemble.ID., ]
    data_not_in_filtered$Motif_GRGGC_Center_Positions <- sapply(data_not_in_filtered$Motif_GRGGC_Center_Positions, toString)
    data_not_in_filtered$Motif_GCCYR_Center_Positions <- sapply(data_not_in_filtered$Motif_GCCYR_Center_Positions, toString)
    write.table(data_not_in_filtered, file="motifs_in_promoters_without_LT_peak.txt", sep="\t", row.names = FALSE)
    #780 vs 19262
    #1707 vs ca. 60000
    #sed -i 's/Symbol: //g' motifs_in_promoters_with_LT_peak.txt
    #sed -i 's/Type: //g' motifs_in_promoters_with_LT_peak.txt
    #sed -i 's/Symbol: //g' motifs_in_promoters_without_LT_peak.txt
    #sed -i 's/Type: //g' motifs_in_promoters_without_LT_peak.txt
    #sed -i 's/"//g' motifs_in_promoters_with_LT_peak.txt
    #sed -i 's/"//g' motifs_in_promoters_without_LT_peak.txt
    
    #--3.3. prepare data for motifs_in_promoters_with_LT_peak.txt
    data1 <- read.table("motifs_in_promoters_with_LT_peak.txt", sep="\t", header=TRUE, stringsAsFactors=FALSE)
    
    data1$Motif_GRGGC_Count <- as.numeric(data1$Motif_GRGGC_Count)
    data1$Motif_GCCYR_Count <- as.numeric(data1$Motif_GCCYR_Count)
    data1$Motif_GRGGC_Center_Positions <- strsplit(as.character(data1$Motif_GRGGC_Center_Positions), ",")
    data1$Motif_GCCYR_Center_Positions <- strsplit(as.character(data1$Motif_GCCYR_Center_Positions), ",")
    # Create data1 frames for each motif
    data1_motif1 <- data.frame(PromoterID = rep(data1$PromoterID, data1$Motif_GRGGC_Count), 
                              Motif = "Motif GRGGC", 
                              Position = unlist(data1$Motif_GRGGC_Center_Positions))
    data1_motif2 <- data.frame(PromoterID = rep(data1$PromoterID, data1$Motif_GCCYR_Count), 
                              Motif = "Motif GCCYR", 
                              Position = unlist(data1$Motif_GCCYR_Center_Positions))
    # Combine motif data1 frames
    data1_positions <- rbind(data1_motif1, data1_motif2)
    # Get positions as numeric values, excluding NAs
    motif1_positions_with_LT_peak <- as.numeric(data1_positions$Position[data1_positions$Motif == "Motif GRGGC"])
    motif2_positions_with_LT_peak <- as.numeric(data1_positions$Position[data1_positions$Motif == "Motif GCCYR"])
    
    #--3.4. prepare data for motifs_in_promoters_without_LT_peak.txt
    data2 <- read.table("motifs_in_promoters_without_LT_peak.txt", sep="\t", header=TRUE, stringsAsFactors=FALSE)
    data2$Motif_GRGGC_Count <- as.numeric(data2$Motif_GRGGC_Count)
    data2$Motif_GCCYR_Count <- as.numeric(data2$Motif_GCCYR_Count)
    data2$Motif_GRGGC_Center_Positions <- strsplit(as.character(data2$Motif_GRGGC_Center_Positions), ",")
    data2$Motif_GCCYR_Center_Positions <- strsplit(as.character(data2$Motif_GCCYR_Center_Positions), ",")
    # Create data2 frames for each motif
    data2_motif1 <- data.frame(PromoterID = rep(data2$PromoterID, data2$Motif_GRGGC_Count), 
                              Motif = "Motif GRGGC", 
                              Position = unlist(data2$Motif_GRGGC_Center_Positions))
    data2_motif2 <- data.frame(PromoterID = rep(data2$PromoterID, data2$Motif_GCCYR_Count), 
                              Motif = "Motif GCCYR", 
                              Position = unlist(data2$Motif_GCCYR_Center_Positions))
    # Combine motif data2 frames
    data2_positions <- rbind(data2_motif1, data2_motif2)
    
    # Get positions as numeric values, excluding NAs
    motif1_positions_without_LT_peak <- as.numeric(data2_positions$Position[data2_positions$Motif == "Motif GRGGC"])
    motif2_positions_without_LT_peak <- as.numeric(data2_positions$Position[data2_positions$Motif == "Motif GCCYR"])
    
    #--3.5. Plot Histogram of counts and density of positions
    # Define a common x-axis limit for all plots
    x_limit <- max(max(data1$Motif_GRGGC_Count), max(data1$Motif_GCCYR_Count), max(data2$Motif_GRGGC_Count), max(data2$Motif_GCCYR_Count))
    # Adjust the number of breaks (nbins) to control the width of histograms
    nbins <- 30
    
    y_limit1 <- 300
    y_limit2 <- 12000
    # Plot Histogram of counts with the same scale for x-axis
    png("Histogram_of_Motif_GRGGC_in_promoters_with_LT_peak.png", width=800, height=800)
    hist(data1$Motif_GRGGC_Count, main = "Histogram of Motif GRGGC in promoters with LT peak", xlab = "Counts", xlim = c(0, x_limit), ylim = c(0, y_limit1), breaks = 20)
    dev.off()
    png("Histogram_of_Motif_GRGGC_in_promoters_without_LT_peak.png", width=800, height=800)
    hist(data2$Motif_GRGGC_Count, main = "Histogram of Motif GRGGC in promoters without LT peak", xlab = "Counts", xlim = c(0, x_limit), ylim = c(0, y_limit2), breaks = nbins)
    dev.off()
    png("Histogram_of_Motif_GCCYR_in_promoters_with_LT_peak.png", width=800, height=800)
    hist(data1$Motif_GCCYR_Count, main = "Histogram of Motif GCCYR in promoters with LT peak", xlab = "Counts", xlim = c(0, x_limit), ylim = c(0, y_limit1), breaks = nbins)
    dev.off()
    png("Histogram_of_Motif_GCCYR_in_promoters_without_LT_peak.png", width=800, height=800)
    hist(data2$Motif_GCCYR_Count, main = "Histogram of Motif GCCYR in promoters without LT peak", xlab = "Counts", xlim = c(0, x_limit), ylim = c(0, y_limit2), breaks = nbins)
    dev.off()
    
    # Set up the layout for the plots
    png("Histogram_of_Motifs.png", width = 1000, height = 1000)
    par(mfrow = c(2, 2))
    hist(data1$Motif_GRGGC_Count, main = "Motif GRGGC Counts with LT peak", xlab = "Counts", xlim = c(0, x_limit), ylim = c(0, y_limit1), breaks = 20)
    hist(data2$Motif_GRGGC_Count, main = "Motif GRGGC Counts without LT peak", xlab = "Counts", xlim = c(0, x_limit), ylim = c(0, y_limit2), breaks = nbins)
    hist(data1$Motif_GCCYR_Count, main = "Motif GCCYR Counts with LT peak", xlab = "Counts", xlim = c(0, x_limit), ylim = c(0, y_limit1), breaks = nbins)
    hist(data2$Motif_GCCYR_Count, main = "Motif GCCYR Counts without LT peak", xlab = "Counts", xlim = c(0, x_limit), ylim = c(0, y_limit2), breaks = nbins)
    dev.off()
    
    # Set the ylim value
    ylim <- c(0.0001, 0.0003)
    png("Density_of_Motif_GRGGC_in_promoters_with_LT_peak.png", width=800, height=800)
    plot(density(motif1_positions_with_LT_peak, na.rm = TRUE), main="Density of GRGGC in promoters with LT peak", xlab="Position", ylim = ylim)
    dev.off()
    png("Density_of_Motif_GRGGC_in_promoters_without_LT_peak.png", width=800, height=800)
    plot(density(motif1_positions_without_LT_peak, na.rm = TRUE), main="Density of GRGGC in promoters without LT peak", xlab="Position", ylim = ylim)
    dev.off()
    png("Density_of_Motif_GCCYR_in_promoters_with_LT_peak.png", width=800, height=800)
    plot(density(motif2_positions_with_LT_peak, na.rm = TRUE), main="Density of GCCYR in promoters with LT peak", xlab="Position", ylim = ylim)
    dev.off()
    png("Density_of_Motif_GCCYR_in_promoters_without_LT_peak.png", width=800, height=800)
    plot(density(motif2_positions_without_LT_peak, na.rm = TRUE), main="Density of GCCYR in promoters without LT peak", xlab="Position", ylim = ylim)
    dev.off()
    
    png("Density_of_Motifs.png", width = 1000, height = 1000)
    par(mfrow = c(2, 2))
    plot(density(motif1_positions_with_LT_peak, na.rm = TRUE), main = "Density of GRGGC in promoters with LT peak", xlab = "Position", ylim = ylim)
    plot(density(motif1_positions_without_LT_peak, na.rm = TRUE), main = "Density of GRGGC in promoters without LT peak", xlab = "Position", ylim = ylim)
    plot(density(motif2_positions_with_LT_peak, na.rm = TRUE), main = "Density of GCCYR in promoters with LT peak", xlab = "Position", ylim = ylim)
    plot(density(motif2_positions_without_LT_peak, na.rm = TRUE), main = "Density of GCCYR in promoters without LT peak", xlab = "Position", ylim = ylim)
    dev.off()
    
    #--3.6. assign each promoter to a prefined class according to Motifs_Count and Avg_Distance_To_TSS_of_Motifs
    library(dplyr)
    data <- read.table("motifs_in_promoters_with_LT_peak.txt", sep="\t", header=TRUE, stringsAsFactors=FALSE)
    data$Motif_GRGGC_Count <- as.numeric(data$Motif_GRGGC_Count)
    data$Motif_GCCYR_Count <- as.numeric(data$Motif_GCCYR_Count)
    # Add a column for the sum of Motif_GRGGC_Count and Motif_GCCYR_Count
    data <- data %>%
      mutate(Motifs_Count = Motif_GRGGC_Count + Motif_GCCYR_Count)
    # Calculate absolute average Motif_GRGGC distance to TSS
    data$Avg_Distance_To_TSS_of_Motif_GRGGC <- sapply(strsplit(data$Motif_GRGGC_Center_Positions, ", "), 
                                             function(x) round(mean(as.numeric(x), na.rm = TRUE)))
    # Calculate absolute average Motif_GCCYR distance to TSS
    data$Avg_Distance_To_TSS_of_Motif_GCCYR <- sapply(strsplit(data$Motif_GCCYR_Center_Positions, ", "), 
                                             function(x) round(mean(as.numeric(x), na.rm = TRUE)))
    # Revised function to calculate the mean of two strings of comma-separated numbers
    mean_of_strings <- function(str1, str2) {
      # Convert strings of numbers to numeric vectors
      vec1 <- as.numeric(strsplit(str1, split = ",")[[1]])
      vec2 <- as.numeric(strsplit(str2, split = ",")[[1]])
      # Handle cases where vec1 or vec2 is NULL (i.e., when str1 or str2 is an empty string)
      if (is.null(vec1)) {
        vec1 <- numeric(0)
      }
      if (is.null(vec2)) {
        vec2 <- numeric(0)
      }
      # Compute the mean of the two vectors
      return(round(mean(c(vec1, vec2), na.rm = TRUE)))
    }
    # Apply the function to each row of the dataframe
    data$Avg_Distance_To_TSS_of_Motifs <- mapply(mean_of_strings, data$Motif_GRGGC_Center_Positions, data$Motif_GCCYR_Center_Positions)
    # Assign classes based on the given rules
    data <- data %>%
      mutate(
        Class_based_Motif_GRGGC = case_when(
          Motif_GRGGC_Count < 50 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) <= 500 ~ "Class 1",
          Motif_GRGGC_Count < 50 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) > 500 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) <= 1000 ~ "Class 2",
          Motif_GRGGC_Count < 50 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) > 1000 ~ "Class 3",
          Motif_GRGGC_Count >= 50 & Motif_GRGGC_Count < 100 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) <= 500 ~ "Class 4",
          Motif_GRGGC_Count >= 50 & Motif_GRGGC_Count < 100 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) > 500 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) <= 1000 ~ "Class 5",
          Motif_GRGGC_Count >= 50 & Motif_GRGGC_Count < 100 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) > 1000 ~ "Class 6",
          Motif_GRGGC_Count >= 100 & Motif_GRGGC_Count < 150 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) <= 500 ~ "Class 7",
          Motif_GRGGC_Count >= 100 & Motif_GRGGC_Count < 150 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) > 500 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) <= 1000 ~ "Class 8",
          Motif_GRGGC_Count >= 100 & Motif_GRGGC_Count < 150 & abs(Avg_Distance_To_TSS_of_Motif_GRGGC) > 1000 ~ "Class 9"
        )
      )
    data <- data %>%
      mutate(
        Class_based_Motif_GCCYR = case_when(
          Motif_GCCYR_Count < 50 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) <= 500 ~ "Class 1",
          Motif_GCCYR_Count < 50 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) > 500 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) <= 1000 ~ "Class 2",
          Motif_GCCYR_Count < 50 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) > 1000 ~ "Class 3",
          Motif_GCCYR_Count >= 50 & Motif_GCCYR_Count < 100 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) <= 500 ~ "Class 4",
          Motif_GCCYR_Count >= 50 & Motif_GCCYR_Count < 100 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) > 500 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) <= 1000 ~ "Class 5",
          Motif_GCCYR_Count >= 50 & Motif_GCCYR_Count < 100 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) > 1000 ~ "Class 6",
          Motif_GCCYR_Count >= 100 & Motif_GCCYR_Count < 150 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) <= 500 ~ "Class 7",
          Motif_GCCYR_Count >= 100 & Motif_GCCYR_Count < 150 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) > 500 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) <= 1000 ~ "Class 8",
          Motif_GCCYR_Count >= 100 & Motif_GCCYR_Count < 150 & abs(Avg_Distance_To_TSS_of_Motif_GCCYR) > 1000 ~ "Class 9"
        )
      )
    data <- data %>%
      mutate(
        Class_based_Motifs = case_when(
          Motifs_Count < 50 & abs(Avg_Distance_To_TSS_of_Motifs) <= 500 ~ "Class 1",
          Motifs_Count < 50 & abs(Avg_Distance_To_TSS_of_Motifs) > 500 & abs(Avg_Distance_To_TSS_of_Motifs) <= 1000 ~ "Class 2",
          Motifs_Count < 50 & abs(Avg_Distance_To_TSS_of_Motifs) > 1000 ~ "Class 3",
          Motifs_Count >= 50 & Motifs_Count < 100 & abs(Avg_Distance_To_TSS_of_Motifs) <= 500 ~ "Class 4",
          Motifs_Count >= 50 & Motifs_Count < 100 & abs(Avg_Distance_To_TSS_of_Motifs) > 500 & abs(Avg_Distance_To_TSS_of_Motifs) <= 1000 ~ "Class 5",
          Motifs_Count >= 50 & Motifs_Count < 100 & abs(Avg_Distance_To_TSS_of_Motifs) > 1000 ~ "Class 6",
          Motifs_Count >= 100 & Motifs_Count < 150 & abs(Avg_Distance_To_TSS_of_Motifs) <= 500 ~ "Class 7",
          Motifs_Count >= 100 & Motifs_Count < 150 & abs(Avg_Distance_To_TSS_of_Motifs) > 500 & abs(Avg_Distance_To_TSS_of_Motifs) <= 1000 ~ "Class 8",
          Motifs_Count >= 100 & Motifs_Count < 150 & abs(Avg_Distance_To_TSS_of_Motifs) > 1000 ~ "Class 9"
        )
      )
    # Define the desired column order
    desired_columns <- c("PromoterID","Gene_Symbol","Gene_Type","Motif_GRGGC_Count","Motif_GRGGC_Center_Positions","Avg_Distance_To_TSS_of_Motif_GRGGC","Class_based_Motif_GRGGC",  "Motif_GCCYR_Count","Motif_GCCYR_Center_Positions","Avg_Distance_To_TSS_of_Motif_GCCYR","Class_based_Motif_GCCYR",  "Motifs_Count","Avg_Distance_To_TSS_of_Motifs","Class_based_Motifs")
    # Reorder the columns
    data <- select(data, all_of(desired_columns))
    #sed -i 's/Motifs/Motifs_GRGGC+GCCYR/g' motifs_in_promoters_with_LT_peak_Category.txt
    write.table(data, file="motifs_in_promoters_with_LT_peak_Category.txt", sep="\t", row.names = FALSE)
    
    #--3.7. add peak information into motif table
    ./add_peaks_to_motifs.py
    #~/Tools/csv2xls-0.4/csv_to_xls.py _peaks_and_motifs_in_promoters_with_LT_peak.txt peak_tss_distances.txt -d$'\t' -o peaks_and_motifs_in_promoters_with_LT_peak.xls;
    #rename the name of sheet1 to "peaks_and_motifs_in_promoters_with_LT_peak" and "all_LT_peaks_NHDF"
    
  • plot_peaks.py (updated code)

  • plot_peaks.py (updated code)

    #python3 plot_peaks.py peaks_NHDF_.bed /home/jhuang/REFs/gencode.v43.annotation.gtf.db 
    #mv peak_tss_distances.xlsx peak_tss_distances_NHDF.xlsx
    #mv peak_tss_distances.txt peak_tss_distances_NHDF.txt
    #mv peak_distribution.csv peak_distribution_NHDF.csv
    #mv peak_distribution.png peak_distribution_NHDF.png
    #python3 plot_peaks.py peaks_HEK293_.bed /home/jhuang/REFs/gencode.v43.annotation.gtf.db 
    #mv peak_tss_distances.xlsx peak_tss_distances_HEK293.xlsx
    #mv peak_tss_distances.txt peak_tss_distances_HEK293.txt
    #mv peak_distribution.csv peak_distribution_HEK293.csv
    #mv peak_distribution.png peak_distribution_HEK293.png
    #python3 plot_peaks.py peaks_PFSK-1_.bed /home/jhuang/REFs/gencode.v43.annotation.gtf.db 
    #mv peak_tss_distances.xlsx peak_tss_distances_PFSK-1.xlsx
    #mv peak_tss_distances.txt peak_tss_distances_PFSK-1.txt
    #mv peak_distribution.csv peak_distribution_PFSK-1.csv
    #mv peak_distribution.png peak_distribution_PFSK-1.png
    
    import pprint
    import argparse
    import matplotlib.pyplot as plt
    import pandas as pd
    import gffutils
    import numpy as np
    
    def plot_peak_distribution(peaks_file, gencode_db):
        db = gffutils.FeatureDB(gencode_db, keep_order=True)
        peaks = pd.read_table(peaks_file, header=None)
        peaks.columns = ['chrom', 'start', 'end', 'name', 'score']
        tss_positions = []
        tss_genes = []
        for gene in db.features_of_type('gene'):
            if gene.strand == '+':
                tss_positions.append(gene.start)
            else:
                tss_positions.append(gene.end)
            tss_genes.append(gene)
        peak_tss_distances = []
        peak_names = []
        closest_genes = []
        closest_gene_names = []
        closest_strands = []
        closest_gene_types = []  # New list for gene_type
    
        for _, peak in peaks.iterrows():
            peak_center = (peak['start'] + peak['end']) // 2
            closest_tss_index = np.argmin([abs(tss - peak_center) for tss in tss_positions])
            distance_to_tss = peak_center - tss_positions[closest_tss_index]
            peak_tss_distances.append(distance_to_tss)
            peak_names.append(peak['name'])
            closest_genes.append(tss_genes[closest_tss_index].id)
            if 'gene_name' in tss_genes[closest_tss_index].attributes:
                closest_gene_name = tss_genes[closest_tss_index].attributes['gene_name'][0]
            else:
                closest_gene_name = 'N/A'  # Set a default value if 'gene_name' attribute is not present
            closest_gene_names.append(closest_gene_name)
            closest_strands.append(tss_genes[closest_tss_index].strand)
    
            if 'gene_type' in tss_genes[closest_tss_index].attributes:
                closest_gene_type = tss_genes[closest_tss_index].attributes['gene_type'][0]
            else:
                closest_gene_type = 'N/A'  # Set a default value if 'gene_type' attribute is not present
            closest_gene_types.append(closest_gene_type)
    
        df = pd.DataFrame({
            'Peak Name': peak_names,
            'Distance to TSS': peak_tss_distances,
            'Closest Gene (Ensemble ID)': closest_genes,
            'Closest Gene (Gene name)': closest_gene_names,
            'Gene Strand': closest_strands,
            'Gene Type': closest_gene_types  # Add new column for gene_type
        })
    
        df.to_excel('peak_tss_distances.xlsx', index=False)
        df.to_csv('peak_tss_distances.txt', sep='\t', index=False)  # Save as tab-separated text file
        bins_no=600   #1000 for nHDF, 600 for HEK293 and PFSK-1
        counts, bin_edges = np.histogram(peak_tss_distances, bins=bins_no)
        bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2
        hist_df = pd.DataFrame({'Bin Center': bin_centers, 'Count': counts})
        hist_df.to_csv('peak_distribution.csv', index=False)
        total_peaks = hist_df['Count'].sum()
        with open('peak_distribution.csv', 'a') as f:
            f.write(f'\nTotal number of peaks: {total_peaks}')
    
        # Set the figure background to be transparent
        plt.gcf().set_facecolor('none')
        plt.gcf().patch.set_alpha(0.0)
    
        plt.hist(peak_tss_distances, bins=bins_no)
    
        plt.xlabel('Distance to TSS', fontsize=17)
        plt.ylabel('Number of peaks', fontsize=17)
        plt.title('')
        #plt.title('Distribution of peaks around TSS', fontsize=12)
    
        # Set tick label font sizes
        plt.xticks(fontsize=14)
        plt.yticks(fontsize=14)
    
        # Adjust the space on the left of the figure
        plt.gcf().subplots_adjust(left=0.15)
    
        # Set x-axis range
        plt.xlim(-8000, 8000)
    
        plt.savefig('peak_distribution.png', dpi=300, bbox_inches='tight')
        plt.show()
    
    if __name__ == "__main__":
        parser = argparse.ArgumentParser(description='Plot peak distribution around TSS.')
        parser.add_argument('peaks_file', type=str, help='Path to the peaks.bed file')
        parser.add_argument('gencode_db', type=str, help='Path to the gencode.v43.annotation.db file')
        args = parser.parse_args()
        plot_peak_distribution(args.peaks_file, args.gencode_db)
    

like unlike

点赞本文的读者

还没有人对此文章表态


本文有评论

没有评论

看文章,发评论,不要沉默


© 2023 XGenes.com Impressum