细胞分子的降解机制与cDNA的制备及用途

gene_x 0 like s 385 view s

Tags: genes, gene, genome, protein, cell

  1. mRNA、DNA 和蛋白质都是细胞内的重要分子,它们会在一定的时候被降解以维持细胞的稳态。以下是它们在人体中被降解的方式:

    • mRNA降解:

      • 5'->3' 衰减:这是在真核生物中最常见的mRNA降解途径。当mRNA分子的5'端被去除帽子结构时,一种称为Xrn1的酶开始从5'端逐渐降解mRNA。
      • 3'->5' 衰减:多蛋白复合体,如核糖核酸酶体(exosome complex)可以从3'端逐渐降解mRNA。
      • 内部切割:一些内部RNase可以特异性地识别并切割mRNA,从而导致其降解。
    • DNA降解:

      • DNA的降解主要是为了修复损伤或者进行细胞程序性死亡。
      • 细胞中有许多DNA修复酶,它们可以修复DNA损伤。当DNA受到损伤时,某些酶可以识别并去除损伤部位,然后由其他酶填充并连接这些缺失部位。
      • 在程序性细胞死亡(如凋亡)中,DNA会被内部的核酸酶切割,导致细胞内容的泄漏并促进细胞的死亡。
    • 蛋白质降解:

      • 蛋白酶体途径:蛋白酶体是一个大型的蛋白复合体,可以识别并降解标记有泛素的蛋白质。被泛素化的蛋白质会被蛋白酶体识别并降解为小的多肽片段。
      • 溶酶体途径:溶酶体是含有各种酶的酸性囊泡。蛋白质可以被送入溶酶体并在那里被降解。
      • 自噬:细胞可以通过一个叫做自噬的过程降解其自身的组分。在这个过程中,细胞形成一个围绕蛋白质或细胞器的膜囊,然后与溶酶体融合并降解其内容物。
  2. mRNA, DNA, and proteins are crucial molecules within cells. They undergo degradation to maintain cellular homeostasis. Here's how they are degraded in the human body:

    • mRNA degradation:

      • 5'->3' decay: This is the most common mRNA degradation pathway in eukaryotes. When the cap structure at the 5' end of an mRNA molecule is removed, an enzyme called Xrn1 begins to degrade the mRNA progressively from the 5' end.
      • 3'->5' decay: Multi-protein complexes, like the exosome complex, can degrade mRNA progressively from the 3' end.
      • Endonucleolytic cleavage: Some internal RNases can specifically recognize and cleave mRNAs, leading to their degradation.
    • DNA degradation:

      • DNA degradation is primarily for damage repair or programmed cell death.
      • Many DNA repair enzymes exist in cells. When DNA is damaged, certain enzymes can identify and remove the damaged parts, which are then filled and ligated by other enzymes.
      • In programmed cell death (such as apoptosis), DNA is cleaved by internal nucleases, leading to the leakage of cellular contents and promoting cell death.
    • Protein degradation:

      • Proteasome pathway: The proteasome is a large protein complex that identifies and degrades proteins marked with ubiquitin. Ubiquitinated proteins are recognized and degraded into short peptides by the proteasome.
      • Lysosomal pathway: Lysosomes are acidic vesicles containing various enzymes. Proteins can be delivered to lysosomes and degraded there.
      • Autophagy: Cells can degrade their components through a process called autophagy. Here, the cell forms a membranous sac around proteins or organelles, which then fuses with a lysosome and degrades its contents.
  3. cDNA(complementary DNA)是通过反转录酶从mRNA模板上合成的双链DNA。它是mRNA的补足DNA,因此其序列与mRNA的编码区域相对应,但不包括内含子。

    • cDNA的制备过程如下:

      • 反转录:首先,将纯化的mRNA和一个短的寡腺苷酸引物(通常是多T引物,也称为oligo(dT)引物)混合。这个引物能与mRNA的多A尾结合。
      • 使用反转录酶,这个引物起始合成一个cDNA的单链。
      • 该单链cDNA可以被用作模板,利用DNA聚合酶进行第二条链的合成,从而得到双链cDNA。
    • cDNA在分子生物学研究中有许多用途:

      • cDNA图书馆:由于cDNA是由mRNA模板合成的,因此只代表被转录的基因。通过制备特定组织或细胞类型的cDNA图书馆,研究者可以确定哪些基因在特定条件下被表达。
      • 克隆与表达:cDNA可以被克隆到表达载体中,然后在宿主细胞中产生蛋白质。这是因为cDNA只包含编码区域,不包含内含子,所以可以在原核细胞(如大肠杆菌)中得到正确的蛋白质表达。
      • 基因芯片和RNA测序:cDNA也常用于基因芯片技术和RNA测序中,作为对比或参考。
  4. cDNA (complementary DNA) is double-stranded DNA synthesized from an mRNA template through the action of reverse transcriptase. It is the complementary version of mRNA. Thus, its sequence corresponds to the coding region of mRNA but excludes introns.

    • The preparation of cDNA is as follows:

      • Reverse transcription: First, purified mRNA is mixed with a short oligoadenylate primer (often a poly-T primer or oligo(dT) primer). This primer can bind to the poly-A tail of mRNA.
      • Using reverse transcriptase, this primer starts synthesizing a single-stranded cDNA.
      • This single-stranded cDNA can then serve as a template, with DNA polymerase synthesizing the second strand to produce double-stranded cDNA.
    • cDNA has several uses in molecular biology research:

      • cDNA libraries: Since cDNA is synthesized from mRNA, it represents only transcribed genes. By preparing a cDNA library from specific tissues or cell types, researchers can determine which genes are expressed under specific conditions.
      • Cloning and expression: cDNA can be cloned into expression vectors and then produce proteins in host cells. Since cDNA only contains coding regions and excludes introns, it allows for the correct protein expression in prokaryotic cells (like E. coli).
      • Gene chips and RNA sequencing: cDNA is also frequently used in gene chip technology and RNA sequencing as a reference or comparator.

like unlike

点赞本文的读者

还没有人对此文章表态


本文有评论

没有评论

看文章,发评论,不要沉默


© 2023 XGenes.com Impressum