gene_x 0 like s 120 view s
Tags: processing, pipeline
https://www.idtdna.com/pages/products/next-generation-sequencing/workflow/xgen-ngs-amplicon-sequencing/predesigned-amplicon-panels/xgen-monkeypox-virus-amplicon-panel
Monkeypox has been termed a global health emergency. For researchers interested in tracking the evolution of the monkeypox virus genome, it can be difficult to get sufficient coverage. The xGen Monkeypox Virus Amplicon Panel provides a single-tube, two-step PCR amplification workflow with primer sets designed to create amplicons across the entire genome.*
If coverage is too low, you may need to sequence more reads to ensure uniform coverage. For many assembly algorithms, 30x coverage or higher is recommended.
Query Seq-id Start of alignment in query End of alignment in query Start of alignment in subject End of alignment in subject Expect value Alignment length Percentage of identical matches Subject Seq-id Subject Title Query Coverage Per Subject Query Coverage Per HSP Subject accession Subject sequence length Query sequence length
Using bacto pipeline to get trimmed reads
cp /home/jhuang/Tools/bacto/bacto-0.1.json .
cp /home/jhuang/Tools/bacto/cluster.json .
cp /home/jhuang/Tools/bacto/Snakefile .
ln -s /home/jhuang/Tools/bacto/local .
ln -s /home/jhuang/Tools/bacto/db .
ln -s /home/jhuang/Tools/bacto/envs .
mkdir raw_data; cd raw_data
ln -s ../raw_data_downloads/Affe30_S1_L001_R1_001.fastq.gz Affe30_R1.fastq.gz
ln -s ../raw_data_downloads/Affe30_S1_L001_R2_001.fastq.gz Affe30_R2.fastq.gz
ln -s ../raw_data_downloads/Affe31_S2_L001_R1_001.fastq.gz Affe31_R1.fastq.gz
ln -s ../raw_data_downloads/Affe31_S2_L001_R2_001.fastq.gz Affe31_R2.fastq.gz
(bengal3_ac3) /home/jhuang/miniconda3/envs/snakemake_4_3_1/bin/snakemake --printshellcmds
Filtering low complexity
fastp -i Affe30_trimmed_P_1.fastq -I Affe30_trimmed_P_2.fastq -o Affe30_trimmed_R1.fastq -O Affe30_trimmed_R2.fastq --low_complexity_filter --complexity_threshold 30
fastp -i Affe31_trimmed_P_1.fastq -I Affe31_trimmed_P_2.fastq -o Affe31_trimmed_R1.fastq -O Affe31_trimmed_R2.fastq --low_complexity_filter --complexity_threshold 30
Using vrap to assembly and annotate the contigs, the spades-step was replaced with idba of DAMIAN
#--host /home/jhuang/REFs/genome.fa -n /mnt/nvme0n1p1/blast/nt -a /mnt/nvme0n1p1/blast/nr
vrap/vrap.py -1 Affe30_trimmed_R1.fastq.gz -2 Affe30_trimmed_R2.fastq.gz -o Affe30_trimmed_vrap_out -t 40 -l 100
vrap/vrap.py -1 Affe31_trimmed_R1.fastq.gz -2 Affe31_trimmed_R2.fastq.gz -o Affe31_trimmed_vrap_out -t 40 -l 100
#--> ERROR in spades-assembly, we usding idba from DAMIAN assembly, copy the assembly to spades. IT WORKS!
damian.rb --host human3 --type dna -1 /home/jhuang/DATA/Data_Susanne_MPox/Affe31_trimmed_R1.fastq.gz -2 /home/jhuang/DATA/Data_Susanne_MPox/Affe31_trimmed_R2.fastq.gz --sample Affe31_megablast --blastn never --blastp never --min_contiglength 100 --threads 56 --force
damian.rb --host human3 --type dna -1 /home/jhuang/DATA/Data_Susanne_MPox/Affe30_trimmed_R1.fastq.gz -2 /home/jhuang/DATA/Data_Susanne_MPox/Affe30_trimmed_R2.fastq.gz --sample Affe30_megablast --blastn never --blastp never --min_contiglength 100 --threads 56 --force
damian.rb --host human3 --type dna -1 /home/jhuang/DATA/Data_Susanne_MPox/Affe31_trimmed_R1.fastq.gz -2 /home/jhuang/DATA/Data_Susanne_MPox/Affe31_trimmed_R2.fastq.gz --sample Affe31_blastn --blastn progressive --blastp never --min_contiglength 100 --threads 56 --force
damian.rb --host human3 --type dna -1 /home/jhuang/DATA/Data_Susanne_MPox/Affe30_trimmed_R1.fastq.gz -2 /home/jhuang/DATA/Data_Susanne_MPox/Affe30_trimmed_R2.fastq.gz --sample Affe30_blastn --blastn progressive --blastp never --min_contiglength 100 --threads 56 --force
cp ~/rtpd_files/Affe30_megablast/idba_ud_assembly/contig.fa contigs.fasta
cp ~/rtpd_files/Affe31_megablast/idba_ud_assembly/contig.fa contigs.fasta
vrap/vrap.py -1 Affe30_trimmed_R1.fastq.gz -2 Affe30_trimmed_R2.fastq.gz -o Affe30_trimmed_vrap_out -t 40 -l 100
vrap/vrap.py -1 Affe31_trimmed_R1.fastq.gz -2 Affe31_trimmed_R2.fastq.gz -o Affe31_trimmed_vrap_out -t 40 -l 100
Step-by-Step Process for read and contig mapping profiling plots
a. mapping the contig on the reference JX878414
bowtie2-build JX878414.1.fasta JX878414.1_index
bowtie2 -f -x JX878414.1_index -U Affe30_trimmed_vrap_out/spades/contigs.fasta -S Affe30_contigs_aligned.sam
samtools view -S -b Affe30_contigs_aligned.sam > Affe30_contigs_aligned.bam
samtools sort Affe30_contigs_aligned.bam -o Affe30_contigs_aligned_sorted.bam
samtools index Affe30_contigs_aligned_sorted.bam
bowtie2 -f -x JX878414.1_index -U Affe31_trimmed_vrap_out/spades/contigs.fasta -S Affe31_contigs_aligned.sam
samtools view -S -b Affe31_contigs_aligned.sam > Affe31_contigs_aligned.bam
samtools sort Affe31_contigs_aligned.bam -o Affe31_contigs_aligned_sorted.bam
samtools index Affe31_contigs_aligned_sorted.bam
62 reads; of these:
62 (100.00%) were unpaired; of these:
1 (1.61%) aligned 0 times
61 (98.39%) aligned exactly 1 time
0 (0.00%) aligned >1 times
98.39% overall alignment rate
17 reads; of these:
17 (100.00%) were unpaired; of these:
1 (5.88%) aligned 0 times
16 (94.12%) aligned exactly 1 time
0 (0.00%) aligned >1 times
94.12% overall alignment rate
b. candidate methods for mapping the contigs on a reference
#1. Minimap2 – Efficient for aligning large contigs or entire genomes.
minimap2 -ax asm5 JX878414.1.fasta contigs_Affe30.fasta > output.sam
#2. BLAST – More sensitive but slower; good for divergent sequences.
blastn -query contigs_Affe30.fasta -db JX878414.1.fasta -out output.blast -outfmt 6
#3. LAST – Suitable for more distant relationships and large genomic changes.
lastdb my_reference_db JX878414.1.fasta
lastal my_reference_db contigs_Affe30.fasta > output.maf
#4. MUMmer (nucmer) – Best for comparing large contigs or entire genomes, especially with structural variations.
nucmer JX878414.1.fasta contigs_Affe30.fasta -p output
c. Index the Reference Genome (JX878414.1.fasta): You'll need to index your reference genome to align the contigs and reads against it.
samtools faidx JX878414.1.fasta
d. Generate Coverage Profile for Reads (from Fastq): Align the trimmed fastq reads (Affe31_trimmed_R1.fastq.gz and Affe31_trimmed_R2.fastq.gz) to the reference genome using a mapper like BWA or Bowtie2.
bwa index JX878414.1.fasta
bwa mem JX878414.1.fasta Affe31_trimmed_R1.fastq.gz Affe31_trimmed_R2.fastq.gz > Affe31_reads_aligned.sam
Convert the SAM file to BAM and sort it:
samtools view -Sb Affe31_reads_aligned.sam | samtools sort -o Affe31_reads_aligned_sorted.bam
samtools index Affe31_reads_aligned_sorted.bam
#6743 + 0 in total (QC-passed reads + QC-failed reads)
#0 + 0 secondary
#9 + 0 supplementary
#0 + 0 duplicates
#5312 + 0 mapped (78.78% : N/A)
#6734 + 0 paired in sequencing
#3367 + 0 read1
#3367 + 0 read2
#4822 + 0 properly paired (71.61% : N/A)
#4844 + 0 with itself and mate mapped
#459 + 0 singletons (6.82% : N/A)
#0 + 0 with mate mapped to a different chr
#0 + 0 with mate mapped to a different chr (mapQ>=5)
e. Generate Coverage Profile for Contigs: The file Affe31_output_sorted.bam is already aligned against the reference genome. You can directly use it to visualize contig coverage.
Ensure the BAM file is indexed:
samtools index Affe31_contigs_aligned_sorted.bam
f. Generate Coverage Tracks: Use BamCoverage to generate coverage files (in bigWig format) for both the reads and contigs.
For reads coverage:
bamCoverage -b Affe31_reads_aligned_sorted.bam -o Affe31_reads_coverage.bw
For contigs coverage:
bamCoverage -b Affe31_contigs_aligned_sorted.bam -o Affe31_contigs_coverage.bw
g. Generate Coverage Profile for Reads (from Fastq): Align the trimmed fastq reads (Affe30_trimmed_R1.fastq.gz and Affe30_trimmed_R2.fastq.gz) to the reference genome using a mapper like BWA or Bowtie2.
bwa index JX878414.1.fasta
bwa mem JX878414.1.fasta Affe30_trimmed_R1.fastq.gz Affe30_trimmed_R2.fastq.gz > Affe30_reads_aligned.sam
Convert the SAM file to BAM and sort it:
samtools view -Sb Affe30_reads_aligned.sam | samtools sort -o Affe30_reads_aligned_sorted.bam
samtools index Affe30_reads_aligned_sorted.bam
#20556 + 0 in total (QC-passed reads + QC-failed reads)
#0 + 0 secondary
#42 + 0 supplementary
#0 + 0 duplicates
#13645 + 0 mapped (66.38% : N/A)
#20514 + 0 paired in sequencing
#10257 + 0 read1
#10257 + 0 read2
#12582 + 0 properly paired (61.33% : N/A)
#12648 + 0 with itself and mate mapped
#955 + 0 singletons (4.66% : N/A)
#0 + 0 with mate mapped to a different chr
#0 + 0 with mate mapped to a different chr (mapQ>=5)
h. Generate Coverage Profile for Contigs: The file Affe30_output_sorted.bam is already aligned against the reference genome. You can directly use it to visualize contig coverage.
Ensure the BAM file is indexed:
samtools index Affe30_contigs_aligned_sorted.bam
i. Generate Coverage Tracks: Use BamCoverage to generate coverage files (in bigWig format) for both the reads and contigs.
For reads coverage:
bamCoverage -b Affe30_reads_aligned_sorted.bam -o Affe30_reads_coverage.bw
For contigs coverage:
bamCoverage -b Affe30_contigs_aligned_sorted.bam -o Affe30_contigs_coverage.bw
j. calculate coverages
samtools depth -a Affe30_reads_aligned_sorted.bam > coverage.txt
awk '{sum+=$3} END {print "Average coverage = ",sum/NR}' coverage.txt
#Average coverage = 26.6073
samtools depth -a Affe31_reads_aligned_sorted.bam > coverage.txt
awk '{sum+=$3} END {print "Average coverage = ",sum/NR}' coverage.txt
Average coverage = 22.0228
k. Visualize Alignments: Use tools like IGV (Integrative Genomics Viewer) or the following python scripts to visualize the alignment.
import matplotlib.pyplot as plt
import pandas as pd
import pysam
# File paths
contig_bam_file = 'Affe30_contigs_aligned_sorted.bam'
reads_bam_file = 'Affe30_reads_aligned_sorted.bam'
# Function to calculate coverage from BAM file
def calculate_coverage(bam_file):
samfile = pysam.AlignmentFile(bam_file, "rb")
coverage = []
# Iterate over each position in the BAM file to get coverage
for pileupcolumn in samfile.pileup():
coverage.append(pileupcolumn.n) # Number of reads covering this position
return coverage
# Calculate read coverage
read_coverage = calculate_coverage(reads_bam_file)
# Create a DataFrame for read coverage
read_positions = range(len(read_coverage)) # Position is the index
read_data = pd.DataFrame({'position': read_positions, 'coverage': read_coverage})
# Plotting Read Coverage
plt.figure(figsize=(12, 6))
plt.plot(read_data['position'], read_data['coverage'], color='blue')
plt.title("Read Coverage Profile")
plt.xlabel("Genomic Position")
plt.ylabel("Coverage")
plt.grid()
plt.savefig("reads_coverage_profile.png") # Save the plot to a file
plt.close()
# Calculate contig coverage
contig_coverage = calculate_coverage(contig_bam_file)
# Create a DataFrame for contig coverage
contig_positions = range(len(contig_coverage)) # Position is the index
contig_data = pd.DataFrame({'position': contig_positions, 'coverage': contig_coverage})
# Plotting Contig Coverage
plt.figure(figsize=(12, 6))
plt.plot(contig_data['position'], contig_data['coverage'], color='green')
plt.title("Contigs Coverage Profile")
plt.xlabel("Genomic Position")
plt.ylabel("Coverage")
plt.grid()
plt.savefig("contigs_coverage_profile.png") # Save the plot to a file
plt.close()
print("Coverage plots saved successfully.")
Reporting
cp ./Affe30_trimmed_vrap_out/spades/contigs.fasta Affe30_contigs.fasta
cp ./Affe31_trimmed_vrap_out/spades/contigs.fasta Affe31_contigs.fasta
cp ./Affe30_trimmed_vrap_out/blast/blastn.xlsx Affe30_contigs_annotation.xlsx
cp ./Affe31_trimmed_vrap_out/blast/blastn.xlsx Affe31_contigs_annotation.xlsx
1. The contigs from the de novo assembly are incomplete and far from covering the full genome (see attached: Affe30_contigs.fasta, Affe31_contigs.fasta, Affe30_contigs_annotation.xlsx, Affe31_contigs_annotation.xlsx).
2. I've generated a plot showing both the reads and assembled contigs mapped to the closely related reference genome JX878414 (see attached: reads_and_contigs_on_JX878414.png).
3. One major issue I've noted is the low sequencing depth. After processing (trimming, adapter removal, and filtering out low-complexity reads), the remaining read count is very low. In comparison, the benchmark data from IDT shows they generated approximately 2-2.7 million paired reads per sample for a similar study. Our read count after quality control is significantly lower: Affe30 has only 10,257 paired-end reads, and Affe31 has 3,367 paired-end reads.
Here's a summary of the read counts:
Summary of Read Numbers
* Raw read count:
- Affe30: 88,183 x 2 paired-end reads
- Affe31: 70,896 x 2 paired-end reads
* After trimming (adapter sequences, bases with quality < Q30, and reads < 36 nt):
- Affe30: 18,789 x 2 paired-end reads
- Affe31: 11,282 x 2 paired-end reads
* After removing low-complexity reads (e.g., GGGATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT):
- Affe30: 10,257 x 2 paired-end reads
- Affe31: 3,367 x 2 paired-end reads
点赞本文的读者
还没有人对此文章表态
没有评论
Variant Calling for Herpes Simplex Virus 1 from Patient Sample Using Capture Probe Sequencing
Typing of 81 S. epidermidis samples (Luise)
Co-Authorship Network Generator using scraped data from Google Scholar via SerpAPI
© 2023 XGenes.com Impressum