gene_x 0 like s 85 view s
Tags: processing, pipeline
http://xgenes.com/article/article-content/209/rna-seq-skin-organoids-on-grch38-chrhsv1-final/ http://xgenes.com/article/article-content/157/prepare-virus-gtf-for-nextflow-run/
Methods
Data was processed using nf-core/rnaseq v3.12.0 (doi: https://doi.org/10.5281/zenodo.1400710) of the nf-core collection of workflows (Ewels et al., 2020).
The pipeline was executed with Nextflow v22.10.5 (Di Tommaso et al., 2017) with the following command:
nextflow run rnaseq/main.nf --input samplesheet.csv --outdir results --fasta /home/jhuang/DATA/Data_Tam_RNAseq_2024/CP059040.fasta --gff /home/jhuang/DATA/Data_Tam_RNAseq_2024/CP059040.gff -profile docker -resume --max_cpus 55 --max_memory 512.GB --max_time 2400.h --save_align_intermeds --save_unaligned --save_reference --aligner star_salmon --gtf_group_features gene_id --gtf_extra_attributes gene_name --featurecounts_group_type gene_biotype --featurecounts_feature_type transcript
prepare reference
They are wildtype strains grown in different medium.
AUM - artificial urine medium
Urine - human urine
MHB - Mueller-Hinton broth
mkdir raw_data; cd raw_data
ln -s ../X101SC24105589-Z01-J001/01.RawData/AUM-1/AUM-1_1.fq.gz AUM_r1_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/AUM-1/AUM-1_2.fq.gz AUM_r1_R2.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/AUM-2/AUM-2_1.fq.gz AUM_r2_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/AUM-2/AUM-2_2.fq.gz AUM_r2_R2.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/AUM-3/AUM-3_1.fq.gz AUM_r3_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/AUM-3/AUM-3_2.fq.gz AUM_r3_R2.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/MHB-1/MHB-1_1.fq.gz MHB_r1_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/MHB-1/MHB-1_2.fq.gz MHB_r1_R2.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/MHB-2/MHB-2_1.fq.gz MHB_r2_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/MHB-2/MHB-2_2.fq.gz MHB_r2_R2.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/MHB-3/MHB-3_1.fq.gz MHB_r3_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/MHB-3/MHB-3_2.fq.gz MHB_r3_R2.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/Urine-1/Urine-1_1.fq.gz Urine_r1_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/Urine-1/Urine-1_2.fq.gz Urine_r1_R2.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/Urine-2/Urine-2_1.fq.gz Urine_r2_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/Urine-2/Urine-2_2.fq.gz Urine_r2_R2.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/Urine-3/Urine-3_1.fq.gz Urine_r3_R1.fq.gz
ln -s ../X101SC24105589-Z01-J001/01.RawData/Urine-3/Urine-3_2.fq.gz Urine_r3_R2.fq.gz
(Optional) using trinity to find the most closely reference
Trinity --seqType fq --max_memory 50G --left trimmed/wt_r1_R1.fastq.gz --right trimmed/wt_r1_R2.fastq.gz --CPU 12
#https://www.genome.jp/kegg/tables/br08606.html#prok
acb KGB Acinetobacter baumannii ATCC 17978 2007 GenBank
abm KGB Acinetobacter baumannii SDF 2008 GenBank
aby KGB Acinetobacter baumannii AYE 2008 GenBank
abc KGB Acinetobacter baumannii ACICU 2008 GenBank
abn KGB Acinetobacter baumannii AB0057 2008 GenBank
abb KGB Acinetobacter baumannii AB307-0294 2008 GenBank
abx KGB Acinetobacter baumannii 1656-2 2012 GenBank
abz KGB Acinetobacter baumannii MDR-ZJ06 2012 GenBank
abr KGB Acinetobacter baumannii MDR-TJ 2012 GenBank
abd KGB Acinetobacter baumannii TCDC-AB0715 2012 GenBank
abh KGB Acinetobacter baumannii TYTH-1 2012 GenBank
abad KGB Acinetobacter baumannii D1279779 2013 GenBank
abj KGB Acinetobacter baumannii BJAB07104 2013 GenBank
abab KGB Acinetobacter baumannii BJAB0715 2013 GenBank
abaj KGB Acinetobacter baumannii BJAB0868 2013 GenBank
abaz KGB Acinetobacter baumannii ZW85-1 2013 GenBank
abk KGB Acinetobacter baumannii AbH12O-A2 2014 GenBank
abau KGB Acinetobacter baumannii AB030 2014 GenBank
abaa KGB Acinetobacter baumannii AB031 2014 GenBank
abw KGB Acinetobacter baumannii AC29 2014 GenBank
abal KGB Acinetobacter baumannii LAC-4 2015 GenBank
Downloading CP059040.fasta and CP059040.gff from GenBank
(Optional) Preparing CP059040.fasta, CP059040_gene.gff3 and CP059040.bed
#Reference genome: https://www.ncbi.nlm.nih.gov/nuccore/CP059040
cp /media/jhuang/Elements2/Data_Tam_RNASeq3/CP059040.fasta . # Elements (Anna C.arnes)
cp /media/jhuang/Elements2/Data_Tam_RNASeq3/CP059040_gene.gff3 .
cp /media/jhuang/Elements2/Data_Tam_RNASeq3/CP059040_gene.gtf .
cp /media/jhuang/Elements2/Data_Tam_RNASeq3/CP059040.bed .
rsync -a -P CP059040.fasta jhuang@hamm:~/DATA/Data_Tam_RNAseq_2024/
rsync -a -P CP059040_gene.gff3 jhuang@hamm:~/DATA/Data_Tam_RNAseq_2024/
rsync -a -P CP059040.bed jhuang@hamm:~/DATA/Data_Tam_RNAseq_2024/
(base) jhuang@WS-2290C:/media/jhuang/Elements2/Data_Tam_RNASeq3$ find . -name "CP059040*"
./CP059040.fasta
./CP059040.bed
./CP059040.gb
./CP059040.gff3
./CP059040.gff3_backup
./CP059040_full.gb
./CP059040_gene.gff3
./CP059040_gene.gtf
./CP059040_gene_old.gff3
./CP059040_rRNA.gff3
./CP059040_rRNA_v.gff3
# ---- REF: Acinetobacter baumannii ATCC 17978 (DEBUG, gene_name failed) ----
#gffread -E -F -T GCA_000015425.1_ASM1542v1_genomic.gff -o GCA_000015425.1_ASM1542v1_genomic.gtf_
#grep "CDS" GCA_000015425.1_ASM1542v1_genomic.gtf_ > GCA_000015425.1_ASM1542v1_genomic.gtf
#sed -i -e "s/\tCDS\t/\texon\t/g" GCA_000015425.1_ASM1542v1_genomic.gtf
#gffread -E -F --bed GCA_000015425.1_ASM1542v1_genomic.gtf -o GCA_000015425.1_ASM1542v1_genomic.bed
grep "locus_tag" GCA_000015425.1_ASM1542v1_genomic.gtf_ > GCA_000015425.1_ASM1542v1_genomic.gtf
sed -i -e "s/\ttranscript\t/\texon\t/g" GCA_000015425.1_ASM1542v1_genomic.gtf # or using fc_count_type=transcript
sed -i -e "s/\tgene_name\t/\tName\t/g" GCA_000015425.1_ASM1542v1_genomic.gtf
gffread -E -F --bed GCA_000015425.1_ASM1542v1_genomic.gtf -o GCA_000015425.1_ASM1542v1_genomic.bed
#grep "gene_name" GCA_000015425.1_ASM1542v1_genomic.gtf | wc -l #69=3887-3803
cp CP059040.gff3 CP059040_backup.gff3
sed -i -e "s/\tGenbank\tgene\t/\tGenbank_gene\t/g" CP059040.gff3
grep "Genbank_gene" CP059040.gff3 > CP059040_gene.gff3
sed -i -e "s/\tGenbank_gene\t/\tGenbank\tgene\t/g" CP059040_gene.gff3
#3796-3754=42--> they are pseudogene since grep "pseudogene" CP059040.gff3 | wc -l = 42
# --------------------------------------------------------------------------------------------------------------------------------------------------
# ---------- PREPARING gff3 file including gene_biotype=protein_coding+gene_biotype=tRNA = total(3754)) and gene_biotype=pseudogene(42) ------------
cp CP059040.gff3 CP059040_backup.gff3
sed -i -e "s/\tGenbank\tgene\t/\tGenbank_gene\t/g" CP059040.gff3
grep "Genbank_gene" CP059040.gff3 > CP059040_gene.gff3
sed -i -e "s/\tGenbank_gene\t/\tGenbank\tgene\t/g" CP059040_gene.gff3
grep "gene_biotype=pseudogene" CP059040.gff3_backup >> CP059040_gene.gff3 #-->3796
#The whole point of the GTF format was to standardise certain aspects that are left open in GFF. Hence, there are many different valid ways to encode the same information in a valid GFF format, and any parser or converter needs to be written specifically for the choices the author of the GFF file made. For example, a GTF file requires the gene ID attribute to be called "gene_id", while in GFF files, it may be "ID", "Gene", something different, or completely missing.
# from gff3 to gtf
sed -i -e "s/\tID=gene-/\tgene_id \"/g" CP059040_gene.gtf
sed -i -e "s/;/\"; /g" CP059040_gene.gtf
sed -i -e "s/=/=\"/g" CP059040_gene.gtf
#sed -i -e "s/\n/\"\n/g" CP059040_gene.gtf
#using editor instead!
#The following is GTF-format.
CP000521.1 Genbank exon 95 1492 . + . transcript_id "gene0"; gene_id "gene0"; Name "A1S_0001"; gbkey "Gene"; gene_biotype "protein_coding"; locus_tag "A1S_0001";
#NZ_MJHA01000001.1 RefSeq region 1 8663 . + . ID=id0;Dbxref=taxon:575584;Name=unnamed1;collected-by=IG Schaub;collection-date=1948;country=USA: Vancouver;culture-collection=ATCC:19606;gbkey=Src;genome=plasmid;isolation-source=urine;lat-lon=37.53 N 75.4 W;map=unlocalized;mol_type=genomic DNA;nat-host=Homo sapiens;plasmid-name=unnamed1;strain=ATCC 19606;type-material=type strain of Acinetobacter baumannii
#NZ_MJHA01000001.1 RefSeq gene 228 746 . - . ID=gene0;Name=BIT33_RS00005;gbkey=Gene;gene_biotype=protein_coding;locus_tag=BIT33_RS00005;old_locus_tag=BIT33_18795
#NZ_MJHA01000001.1 Protein Homology CDS 228 746 . - 0 ID=cds0;Parent=gene0;Dbxref=Genbank:WP_000839337.1;Name=WP_000839337.1;gbkey=CDS;inference=COORDINATES: similar to AA sequence:RefSeq:WP_000839337.1;product=hypothetical protein;protein_id=WP_000839337.1;transl_table=11
##gff-version 3
##sequence-region CP059040.1 1 3980852
##species https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=470
gffread -E -F --bed CP059040.gff3 -o CP059040.bed #-->3796
##prepare the GTF-format (see above) --> ERROR! ----> using CP059040.gff3
##stringtie adeIJ.abx_r1.sorted.bam -o adeIJ.abx_r1.sorted_transcripts.gtf -v -G /media/jhuang/Elements/Data_Tam_RNASeq3/CP059040.gff3 -A adeIJ.abx_r1.sorted.gene_abund.txt -C adeIJ.abx_r1.sorted.bam.cov_refs.gtf -e -b adeIJ.abx_r1.sorted_ballgown
#[01/21 10:57:46] Loading reference annotation (guides)..
#GFF warning: merging adjacent/overlapping segments of gene-H0N29_00815 on CP059040.1 (179715-179786, 179788-180810)
#[01/21 10:57:46] 3796 reference transcripts loaded.
#Default stack size for threads: 8388608
#WARNING: no reference transcripts found for genomic sequence "gi|1906906720|gb|CP059040.1|"! (mismatched reference names?)
#WARNING: no reference transcripts were found for the genomic sequences where reads were mapped!
#Please make sure the -G annotation file uses the same naming convention for the genome sequences.
#[01/21 10:58:30] All threads finished.
# ERROR: failed to find the gene identifier attribute in the 9th column of the provided GTF file.
# The specified gene identifier attribute is 'Name'
# An example of attributes included in your GTF annotation is 'ID=exon-H0N29_00075-1;Parent=rna-H0N29_00075;gbkey=rRNA;locus_tag=H0N29_00075;product=16S ribosomal RNA'
# The program has to termin
# ERROR: failed to find the gene identifier attribute in the 9th column of the provided GTF file.
# The specified gene identifier attribute is 'gene_biotype'
# An example of attributes included in your GTF annotation is 'ID=exon-H0N29_00075-1;Parent=rna-H0N29_00075;gbkey=rRNA;locus_tag=H0N29_00075;product=16S ribosomal RNA'
# The program has to terminate.
#grep "ID=cds-" CP059040.gff3 | wc -l
#grep "ID=exon-" CP059040.gff3 | wc -l
#grep "ID=gene-" CP059040.gff3 | wc -l #the same as H0N29_18980/5=3796
grep "gbkey=" CP059040.gff3 | wc -l 7695
grep "ID=id-" CP059040.gff3 | wc -l 5
grep "locus_tag=" CP059040.gff3 | wc -l 7689
#...
cds 3701 locus_tag=xxxx, no gene_biotype
exon 96 locus_tag=xxxx, no gene_biotype
gene 3796 locus_tag=xxxx, gene_biotype=xxxx,
id (riboswitch+direct_repeat,5) both no --> ignoring them!! # grep "ID=id-" CP059040.gff3
rna 96 locus_tag=xxxx, no gene_biotype
------------------
7694
cp CP059040.gff3_backup CP059040.gff3
grep "^##" CP059040.gff3 > CP059040_gene.gff3
grep "ID=gene" CP059040.gff3 >> CP059040_gene.gff3
#!!!!VERY_IMPORTANT!!!!: change type '\tCDS\t' to '\texon\t'!
sed -i -e "s/\tgene\t/\texon\t/g" CP059040_gene.gff3
Preparing the directory trimmed
mkdir trimmed trimmed_unpaired;
for sample_id in AUM_r1 AUM_r2 AUM_r3 Urine_r1 Urine_r2 Urine_r3 MHB_r1 MHB_r2 MHB_r3; do \
for sample_id in MHB_r1 MHB_r2 MHB_r3; do \
java -jar /home/jhuang/Tools/Trimmomatic-0.36/trimmomatic-0.36.jar PE -threads 100 raw_data/${sample_id}_R1.fq.gz raw_data/${sample_id}_R2.fq.gz trimmed/${sample_id}_R1.fq.gz trimmed_unpaired/${sample_id}_R1.fq.gz trimmed/${sample_id}_R2.fq.gz trimmed_unpaired/${sample_id}_R2.fq.gz ILLUMINACLIP:/home/jhuang/Tools/Trimmomatic-0.36/adapters/TruSeq3-PE-2.fa:2:30:10:8:TRUE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 AVGQUAL:20; done 2> trimmomatic_pe.log;
done
Preparing samplesheet.csv
sample,fastq_1,fastq_2,strandedness
AUM_r1,AUM_r1_R1.fq.gz,AUM_r1_R2.fq.gz,auto
AUM_r2,AUM_r2_R1.fq.gz,AUM_r2_R2.fq.gz,auto
AUM_r3,AUM_r3_R1.fq.gz,AUM_r3_R2.fq.gz,auto
MHB_r1,MHB_r1_R1.fq.gz,MHB_r1_R2.fq.gz,auto
MHB_r2,MHB_r2_R1.fq.gz,MHB_r2_R2.fq.gz,auto
MHB_r3,MHB_r3_R1.fq.gz,MHB_r3_R2.fq.gz,auto
Urine_r1,Urine_r1_R1.fq.gz,Urine_r1_R2.fq.gz,auto
Urine_r2,Urine_r2_R1.fq.gz,Urine_r2_R2.fq.gz,auto
Urine_r3,Urine_r3_R1.fq.gz,Urine_r3_R2.fq.gz,auto
nextflow run
#Example1: http://xgenes.com/article/article-content/157/prepare-virus-gtf-for-nextflow-run/
# ---- SUCCESSFUL with directly downloaded gff3 and fasta from NCBI using docker ----
docker pull nfcore/rnaseq
ln -s /home/jhuang/Tools/nf-core-rnaseq-3.12.0/ rnaseq
(host_env) jhuang@WS-2290C:~/DATA/Data_Tam_RNAseq_2024$ /usr/local/bin/nextflow run rnaseq/main.nf --input samplesheet.csv --outdir results --fasta "/home/jhuang/DATA/Data_Tam_RNAseq_2024/CP059040.fasta" --gff "/home/jhuang/DATA/Data_Tam_RNAseq_2024/CP059040.gff" -profile docker -resume --max_cpus 55 --max_memory 512.GB --max_time 2400.h --save_align_intermeds --save_unaligned --save_reference --aligner 'star_salmon' --gtf_group_features 'gene_id' --gtf_extra_attributes 'gene_name' --featurecounts_group_type 'gene_biotype' --featurecounts_feature_type 'transcript'
/usr/local/bin/nextflow run rnaseq/main.nf --input samplesheet.csv --outdir results --fasta "/home/jhuang/DATA/Data_Tam_RNAseq_2024/CP059040.fasta" --gff "/home/jhuang/DATA/Data_Tam_RNAseq_2024/CP059040.gff" -profile docker -resume --max_cpus 55 --max_memory 512.GB --max_time 2400.h --save_align_intermeds --save_unaligned --save_reference --aligner 'star_salmon' --gtf_group_features 'gene_id' --gtf_extra_attributes 'gene_name' --featurecounts_group_type 'gene_biotype' --featurecounts_feature_type 'transcript'
# -- DEBUG_1 --
#After checking the record (see below) in results/genome/CP059040.gtf, we have to change 'exon' to 'transcript', the default values are --gtf_group_features 'gene_id' --gtf_extra_attributes 'gene_name' --featurecounts_group_type 'gene_biotype' --featurecounts_feature_type 'exon'
#In ./results/genome/CP059040.gtf e.g. "CP059040.1 Genbank transcript 1 1398 . + . transcript_id "gene-H0N29_00005"; gene_id "gene-H0N29_00005"; gene_name "dnaA"; Name "dnaA"; gbkey "Gene"; gene "dnaA"; gene_biotype "protein_coding"; locus_tag "H0N29_00005";"
点赞本文的读者
还没有人对此文章表态
没有评论
Variant Calling for Herpes Simplex Virus 1 from Patient Sample Using Capture Probe Sequencing
Typing of 81 S. epidermidis samples (Luise)
Co-Authorship Network Generator using scraped data from Google Scholar via SerpAPI
© 2023 XGenes.com Impressum