gene_x 0 like s 22 view s
Tags: pipeline
PCA plot untreated/wt vs parental cells; 1x für WaGa cell line und 1x für MKL-1 cells
Heatmap untreated/wt vs parental; 1x für WaGa cell line und 1x für MKL-1 cells
Volcano plot untreated/wt vs parental; 1x für WaGa cell line und 1x für MKL-1 cells
Distribution of different RNA Species untreated/wt and parental; 1x für WaGa cell line und 1x für MKL-1 cells
RNA fragmentation patterns: is EV-RNA full length or fragmented?
RNA binding protein motifs: do we find specific motifs in EV-RNA?
miRNA target analysis
Input files (use R 4.3.3)
~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/merged_gene_counts_40samples.txt
~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/merged_gene_counts_virus_rounded.txt
Common processing for the data MKL+1 + WaGa
#[1] "/home/jhuang/mambaforge/envs/r_env/lib/R/library"
setwd("/home/jhuang/DATA/Data_Ute/Data_RNA-Seq_MKL-1_WaGa/results_2025_1/")
library("AnnotationDbi")
library("clusterProfiler")
library("ReactomePA")
#library("org.Mm.eg.db")
library(DESeq2)
library(gplots)
d.raw_human<- read.delim2("../merged_gene_counts_40samples.txt",sep="\t", header=TRUE, row.names=1)
colnames(d.raw_human)<- c("gene_name","X042_MKL.1_wt_EV","MKL.1_RNA_147","X042_MKL.1_sT_DMSO","MKL.1_RNA","X0505_MKL.1_scr_DMSO_EV","X0505_MKL.1_sT_DMSO_EV","MKL.1_EV.RNA_87","MKL.1_EV.RNA_27","X042_MKL.1_scr_Dox_EV","X042_MKL.1_scr_DMSO_EV","MKL.1_EV.RNA_118","X0505_MKL.1_scr_Dox_EV","MKL.1_EV.RNA","X042_MKL.1_sT_Dox","X0505_MKL.1_sT_Dox_EV","MKL.1_RNA_118","MKL.1_EV.RNA_2", "Geneid.1","gene_name.1","X1605_WaGa_sT_DMSO_EV","WaGa_EV.RNA_118","WaGa_EV.RNA","X2706_WaGa_scr_Dox_EV","X2706_WaGa_sT_DMSO_EV","X1107_WaGa_wt_EV","X1107_WaGa_sT_Dox_EV","WaGa_RNA","X1605_WaGa_scr_DMSO_EV","X2706_WaGa_scr_DMSO_EV","WaGa_EV.RNA_226","X2706_WaGa_sT_Dox_EV","X1605_WaGa_scr_Dox_EV","X1605_WaGa_wt_EV","X1605_WaGa_sT_Dox_EV","X1107_WaGa_scr_DMSO_EV","WaGa_EV.RNA_2","WaGa_EV.RNA_147","WaGa_RNA_118","X1107_WaGa_scr_Dox_EV","X1107_WaGa_sT_DMSO_EV","WaGa_RNA_147","X2706_WaGa_wt_EV")
col_order <- c("gene_name", "MKL.1_RNA","MKL.1_RNA_118","MKL.1_RNA_147","MKL.1_EV.RNA","MKL.1_EV.RNA_2","MKL.1_EV.RNA_118","MKL.1_EV.RNA_87","MKL.1_EV.RNA_27","X042_MKL.1_wt_EV","X042_MKL.1_sT_DMSO","X0505_MKL.1_sT_DMSO_EV","X042_MKL.1_scr_DMSO_EV","X0505_MKL.1_scr_DMSO_EV","X042_MKL.1_sT_Dox","X0505_MKL.1_sT_Dox_EV","X042_MKL.1_scr_Dox_EV","X0505_MKL.1_scr_Dox_EV", "Geneid.1","gene_name.1", "WaGa_RNA","WaGa_RNA_118","WaGa_RNA_147", "WaGa_EV.RNA","WaGa_EV.RNA_2","WaGa_EV.RNA_118","WaGa_EV.RNA_147","WaGa_EV.RNA_226","X1107_WaGa_wt_EV","X1605_WaGa_wt_EV","X2706_WaGa_wt_EV", "X1107_WaGa_sT_DMSO_EV","X1605_WaGa_sT_DMSO_EV","X2706_WaGa_sT_DMSO_EV", "X1107_WaGa_scr_DMSO_EV","X1605_WaGa_scr_DMSO_EV","X2706_WaGa_scr_DMSO_EV", "X1107_WaGa_sT_Dox_EV","X1605_WaGa_sT_Dox_EV","X2706_WaGa_sT_Dox_EV", "X1107_WaGa_scr_Dox_EV","X1605_WaGa_scr_Dox_EV","X2706_WaGa_scr_Dox_EV")
reordered.raw_human <- d.raw_human[,col_order]
d.raw_virus <- read.delim2("../merged_gene_counts_virus_rounded.txt",sep="\t", header=TRUE, row.names=1)
reordered.raw_virus <- d.raw_virus[,col_order]
identical(colnames(reordered.raw_human), colnames(reordered.raw_virus))
reordered.raw <- rbind(reordered.raw_human, reordered.raw_virus)
#rename
colnames(reordered.raw) <- c("gene_name", "MKL-1 parental cell RNA","MKL-1 parental cell RNA 118","MKL-1 parental cell RNA 147", "MKL-1 wt EV RNA","MKL-1 wt EV RNA 2","MKL-1 wt EV RNA 118","MKL-1 wt EV RNA 87","MKL-1 wt EV RNA 27","MKL-1 wt EV RNA 042", "MKL-1 sT DMSO EV RNA 042","MKL-1 sT DMSO EV RNA 0505", "MKL-1 scr DMSO EV RNA 042","MKL-1 scr DMSO EV RNA 0505", "MKL-1 sT Dox EV RNA 042","MKL-1 sT Dox EV RNA 0505", "MKL-1 scr Dox EV RNA 042","MKL-1 scr Dox EV RNA 0505", "Geneid.1","gene_name.1", "WaGa parental cell RNA","WaGa parental cell RNA 118","WaGa parental cell RNA 147", "WaGa wt EV RNA","WaGa wt EV RNA 2","WaGa wt EV RNA 118","WaGa wt EV RNA 147","WaGa wt EV RNA 226","WaGa wt EV RNA 1107","WaGa wt EV RNA 1605","WaGa wt EV RNA 2706", "WaGa sT DMSO EV RNA 1107","WaGa sT DMSO EV RNA 1605","WaGa sT DMSO EV RNA 2706", "WaGa scr DMSO EV RNA 1107","WaGa scr DMSO EV RNA 1605","WaGa scr DMSO EV RNA 2706", "WaGa sT Dox EV RNA 1107","WaGa sT Dox EV RNA 1605","WaGa sT Dox EV RNA 2706", "WaGa scr Dox EV RNA 1107","WaGa scr Dox EV RNA 1605","WaGa scr Dox EV RNA 2706")
reordered.raw$gene_name <- NULL
reordered.raw$Geneid.1 <- NULL
reordered.raw$gene_name.1 <- NULL
write.csv(reordered.raw, file="counts.txt")
#IMPORTANT that we should filter the data with the counts in the STEP!
d <- reordered.raw[rowSums(reordered.raw>3)>2,]
condition_for_pca = as.factor(c("RNA","RNA","RNA","EV","EV","EV","EV","EV","EV","sT.DMSO","sT.DMSO","scr.DMSO","scr.DMSO","sT.Dox","sT.Dox","scr.Dox","scr.Dox", "RNA","RNA","RNA","EV","EV","EV","EV","EV","EV","EV","EV","sT.DMSO","sT.DMSO","sT.DMSO","scr.DMSO","scr.DMSO","scr.DMSO","sT.Dox","sT.Dox","sT.Dox","scr.Dox","scr.Dox","scr.Dox"))
condition = as.factor(c("MKL1.RNA","MKL1.RNA","MKL1.RNA","MKL1.EV","MKL1.EV","MKL1.EV","MKL1.EV","MKL1.EV","MKL1.EV","MKL1.sT.DMSO","MKL1.sT.DMSO","MKL1.scr.DMSO","MKL1.scr.DMSO","MKL1.sT.Dox","MKL1.sT.Dox","MKL1.scr.Dox","MKL1.scr.Dox", "WaGa.RNA","WaGa.RNA","WaGa.RNA","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.sT.DMSO","WaGa.sT.DMSO","WaGa.sT.DMSO","WaGa.scr.DMSO","WaGa.scr.DMSO","WaGa.scr.DMSO","WaGa.sT.Dox","WaGa.sT.Dox","WaGa.sT.Dox","WaGa.scr.Dox","WaGa.scr.Dox","WaGa.scr.Dox"))
donor = as.factor(c("1","118","147", "1","2","118","87","27","042", "042","0505","042","0505","042","0505","042","0505", "1","118","147", "1","2","118","147","226","1107","1605","2706", "1107","1605","2706","1107","1605","2706","1107","1605","2706","1107","1605","2706"))
batch = as.factor(c("2021.08","2021.09","2021.09","2021.08","2021.08","2021.09","2021.09","2021.09","2022.08","2022.08","2022.08","2022.08","2022.08","2022.08","2022.08","2022.08","2022.08", "2021.08","2021.09","2021.09","2021.08","2021.08","2021.09","2021.09","2021.09","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11"))
cell.line = as.factor(c("MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1", "WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa"))
ids = as.factor(c("MKL1.RNA","MKL1.RNA.118","MKL1.RNA.147", "MKL1.EV","MKL1.EV.2","MKL1.EV.118","MKL1.EV.87","MKL1.EV.27","MKL1.EV.042", "MKL1.EV.sT.DMSO.042","MKL1.EV.sT.DMSO.0505", "MKL1.EV.scr.DMSO.042","MKL1.EV.scr.DMSO.0505", "MKL1.EV.sT.Dox.042","MKL1.EV.sT.Dox.0505", "MKL1.EV.scr.Dox.042","MKL1.EV.scr.Dox.0505", "WaGa.RNA","WaGa.RNA.118","WaGa.RNA.147", "WaGa.EV","WaGa.EV.2","WaGa.EV.118","WaGa.EV.147","WaGa.EV.226","WaGa.EV.1107","WaGa.EV.1605","WaGa.EV.2706", "WaGa.EV.sT.DMSO.1107","WaGa.EV.sT.DMSO.1605","WaGa.EV.sT.DMSO.2706", "WaGa.EV.scr.DMSO.1107","WaGa.EV.scr.DMSO.1605","WaGa.EV.scr.DMSO.2706", "WaGa.EV.sT.Dox.1107","WaGa.EV.sT.Dox.1605","WaGa.EV.sT.Dox.2706", "WaGa.EV.scr.Dox.1107","WaGa.EV.scr.Dox.1605","WaGa.EV.scr.Dox.2706"))
cData = data.frame(row.names=colnames(d), condition=condition, donor=donor, batch=batch, cell.line=cell.line, ids=ids)
dds<-DESeqDataSetFromMatrix(countData=d, colData=cData, design=~batch+condition)
#rld <- rlogTransformation(dds)
rld <- vst(dds)
Preparing the data for PCA_MKL1 and PCA_WaGa drawing
#d_WaGa <- d[, !grepl("parental|MKL-1", names(d))]
d_WaGa <- d[, !grepl("MKL-1", names(d))]
condition = as.factor(c("WaGa.RNA","WaGa.RNA","WaGa.RNA","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.EV","WaGa.sT.DMSO","WaGa.sT.DMSO","WaGa.sT.DMSO","WaGa.scr.DMSO","WaGa.scr.DMSO","WaGa.scr.DMSO","WaGa.sT.Dox","WaGa.sT.Dox","WaGa.sT.Dox","WaGa.scr.Dox","WaGa.scr.Dox","WaGa.scr.Dox"))
donor = as.factor(c("1","118","147","1","2","118","147","226","1107","1605","2706", "1107","1605","2706","1107","1605","2706","1107","1605","2706","1107","1605","2706"))
batch = as.factor(c("2021.08","2021.09","2021.09","2021.08","2021.08","2021.09","2021.09","2021.09","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11","2022.11"))
cell.line = as.factor(c("WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa","WaGa"))
ids = as.factor(c("WaGa.RNA","WaGa.RNA.118","WaGa.RNA.147","WaGa.EV","WaGa.EV.2","WaGa.EV.118","WaGa.EV.147","WaGa.EV.226","WaGa.EV.1107","WaGa.EV.1605","WaGa.EV.2706", "WaGa.EV.sT.DMSO.1107","WaGa.EV.sT.DMSO.1605","WaGa.EV.sT.DMSO.2706", "WaGa.EV.scr.DMSO.1107","WaGa.EV.scr.DMSO.1605","WaGa.EV.scr.DMSO.2706", "WaGa.EV.sT.Dox.1107","WaGa.EV.sT.Dox.1605","WaGa.EV.sT.Dox.2706", "WaGa.EV.scr.Dox.1107","WaGa.EV.scr.Dox.1605","WaGa.EV.scr.Dox.2706"))
cData = data.frame(row.names=colnames(d_WaGa), condition=condition, donor=donor, batch=batch, cell.line=cell.line, ids=ids)
dds_WaGa<-DESeqDataSetFromMatrix(countData=d_WaGa, colData=cData, design=~batch+condition)
rld_WaGa <- vst(dds_WaGa)
#d_MKL1 <- d[, !grepl("parental|WaGa", names(d))]
d_MKL1 <- d[, !grepl("WaGa", names(d))]
condition = as.factor(c("MKL1.RNA","MKL1.RNA","MKL1.RNA","MKL1.EV","MKL1.EV","MKL1.EV","MKL1.EV","MKL1.EV","MKL1.EV","MKL1.sT.DMSO","MKL1.sT.DMSO","MKL1.scr.DMSO","MKL1.scr.DMSO","MKL1.sT.Dox","MKL1.sT.Dox","MKL1.scr.Dox","MKL1.scr.Dox"))
donor = as.factor(c("1","118","147","1","2","118","87","27","042", "042","0505","042","0505","042","0505","042","0505"))
batch = as.factor(c("2021.08","2021.09","2021.09","2021.08","2021.08","2021.09","2021.09","2021.09","2022.08","2022.08","2022.08","2022.08","2022.08","2022.08","2022.08","2022.08","2022.08"))
cell.line = as.factor(c("MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1","MKL-1"))
ids = as.factor(c("MKL1.RNA","MKL1.RNA.118","MKL1.RNA.147", "MKL1.EV","MKL1.EV.2","MKL1.EV.118","MKL1.EV.87","MKL1.EV.27","MKL1.EV.042", "MKL1.EV.sT.DMSO.042","MKL1.EV.sT.DMSO.0505", "MKL1.EV.scr.DMSO.042","MKL1.EV.scr.DMSO.0505", "MKL1.EV.sT.Dox.042","MKL1.EV.sT.Dox.0505", "MKL1.EV.scr.Dox.042","MKL1.EV.scr.Dox.0505"))
cData = data.frame(row.names=colnames(d_MKL1), condition=condition, donor=donor, batch=batch, cell.line=cell.line, ids=ids)
dds_MKL1<-DESeqDataSetFromMatrix(countData=d_MKL1, colData=cData, design=~batch+condition)
rld_MKL1 <- vst(dds_MKL1)
# -- before pca --
png("pca.png", 1200, 800)
plotPCA(rld, intgroup=c("condition"))
#plotPCA(rld, intgroup = c("condition", "batch"))
#plotPCA(rld, intgroup = c("condition", "ids"))
#plotPCA(rld, "batch")
dev.off()
#72% (PC1), 11% (PC2) 8% (PC3)
png("pca_WaGa.png", 1200, 800)
plotPCA(rld_WaGa, intgroup = c("condition"))
dev.off()
#80%, 9%
png("pca_MKL1.png", 1200, 800)
plotPCA(rld_MKL1, intgroup = c("condition"))
dev.off()
#77%, 15%
PCA plot untreated/wt vs parental cells; 1x für WaGa cell line und 1x für MKL-1 cells
#install.packages("BiocManager")
#BiocManager::install("genefilter")
#install.packages("writexl")
#install.packages("plotly")
#install.packages("dplyr")
#install.packages("ggrepel")
# Load required libraries
library(ggrepel)
library(dplyr)
library(ggplot2)
library(genefilter)
library(writexl)
# ---- drawing PCA WaGa ----
# Perform PCA on WaGa dataset
pca_data <- plotPCA(rld_WaGa, intgroup = c("condition", "batch", "cell.line"), returnData = TRUE)
write.csv(pca_data, file = "PCA_data_WaGa.csv")
# Compute top variable genes and perform PCA
top_variable_genes <- 500
gene_variance <- rowVars(assay(rld_WaGa))
selected_genes <- order(gene_variance, decreasing = TRUE)[seq_len(min(top_variable_genes, length(gene_variance)))]
# Extract data and run PCA
expression_matrix <- t(assay(rld_WaGa)[selected_genes, ])
pca_results <- prcomp(expression_matrix, center = TRUE, scale. = TRUE)
summary(pca_results) # Display variance explained by PCs
# Extract variance percentages
variance_explained <- summary(pca_results)$importance[2, ]
pc1_variance <- sprintf("%.1f", variance_explained[1] * 100)
pc2_variance <- sprintf("%.1f", variance_explained[2] * 100)
# Create a PCA dataframe
pca_df <- as.data.frame(pca_results$x)
rownames(pca_df) <- rownames(pca_data)
# Merge PCA results with original metadata
pca_data <- pca_data %>%
select(-PC1, -PC2) # Remove old PCA values
merged_pca_data <- merge(pca_data, pca_df, by = "row.names")
rownames(merged_pca_data) <- merged_pca_data$Row.names
merged_pca_data$Row.names <- NULL
# Save merged PCA data
write.csv(merged_pca_data, file = "Merged_PCA_WaGa.csv")
write_xlsx(merged_pca_data, path = "Merged_PCA_WaGa.xlsx")
# Define condition labels
condition_labels <- c(
"WaGa.EV" = "wt EV RNA",
"WaGa.scr.DMSO" = "scr DMSO EV RNA",
"WaGa.scr.Dox" = "scr Dox EV RNA",
"WaGa.sT.DMSO" = "sT DMSO EV RNA",
"WaGa.sT.Dox" = "sT Dox EV RNA",
"WaGa.RNA" = "parental cell RNA"
)
# Apply condition labels and filter relevant conditions
filtered_pca_data <- merged_pca_data %>%
mutate(condition = recode(condition, !!!condition_labels)) %>%
filter(condition %in% c("wt EV RNA", "parental cell RNA"))
# Prepare PCA data for plotting
plot_pca_df <- as.data.frame(filtered_pca_data[, c("PC1", "PC2")])
plot_pca_df$condition <- filtered_pca_data$condition
plot_pca_df$sample_name <- rownames(filtered_pca_data)
# Save PCA plot as PNG
png("PCA_WaGa.png", width = 1000, height = 600, res = 150)
ggplot(plot_pca_df, aes(x = PC1, y = PC2, color = condition)) +
geom_point(size = 4, alpha = 0.8) + # Plot points
labs(
title = "",
x = paste0("Principal Component 1 (", pc1_variance, "%)"),
y = paste0("Principal Component 2 (", pc2_variance, "%)")
) +
theme_minimal() +
scale_color_manual(values = c("blue", "red")) # Customize colors
dev.off() # Close the PNG device and save the file
# ---- drawing PCA MKL-1 ----
# Compute PCA on MKL1 dataset
pca_data <- plotPCA(rld_MKL1, intgroup = c("condition", "batch", "cell.line"), returnData = TRUE)
write.csv(pca_data, file = "PCA_data_MKL1.csv")
# Compute top variable genes and perform PCA
top_variable_genes <- 500
gene_variance <- rowVars(assay(rld_MKL1))
selected_genes <- order(gene_variance, decreasing = TRUE)[seq_len(min(top_variable_genes, length(gene_variance)))]
# Extract and transpose data for PCA
expression_matrix <- t(assay(rld_MKL1)[selected_genes, ])
pca_results <- prcomp(expression_matrix, center = TRUE, scale. = TRUE)
# Extract variance explained percentages
variance_explained <- summary(pca_results)$importance[2, ]
pc1_variance <- sprintf("%.1f", variance_explained[1] * 100)
pc2_variance <- sprintf("%.1f", variance_explained[2] * 100)
# Create a PCA dataframe
pca_df <- as.data.frame(pca_results$x)
rownames(pca_df) <- rownames(pca_data)
# Remove previous PC1 & PC2 columns and merge new PCA results
pca_data <- pca_data %>%
select(-PC1, -PC2)
merged_pca_data <- merge(pca_data, pca_df, by = "row.names")
rownames(merged_pca_data) <- merged_pca_data$Row.names
merged_pca_data$Row.names <- NULL
# Save merged PCA data
write.csv(merged_pca_data, file = "Merged_PCA_MKL1.csv")
write_xlsx(merged_pca_data, path = "Merged_PCA_MKL1.xlsx")
# Define condition labels for clarity
condition_labels <- c(
"MKL1.EV" = "wt EV RNA",
"MKL1.scr.DMSO" = "scr DMSO EV RNA",
"MKL1.scr.Dox" = "scr Dox EV RNA",
"MKL1.sT.DMSO" = "sT DMSO EV RNA",
"MKL1.sT.Dox" = "sT Dox EV RNA",
"MKL1.RNA" = "parental cell RNA"
)
# Apply condition labels and filter for relevant conditions
filtered_pca_data <- merged_pca_data %>%
mutate(condition = recode(condition, !!!condition_labels)) %>%
filter(condition %in% c("wt EV RNA", "parental cell RNA"))
# Prepare PCA data for plotting
plot_pca_df <- as.data.frame(filtered_pca_data[, c("PC1", "PC2")])
plot_pca_df$condition <- filtered_pca_data$condition
plot_pca_df$sample_name <- rownames(filtered_pca_data)
# Save PCA plot as PNG
png("PCA_MKL1.png", width = 1000, height = 600, res = 150)
ggplot(plot_pca_df, aes(x = PC1, y = PC2, color = condition)) +
geom_point(size = 4, alpha = 0.8) + # Plot points
labs(
title = "",
x = paste0("Principal Component 1 (", pc1_variance, "%)"),
y = paste0("Principal Component 2 (", pc2_variance, "%)")
) +
theme_minimal() +
scale_color_manual(values = c("blue", "red")) # Customize colors
dev.off() # Close the PNG device and save the file
Convert bam to bigwig using deepTools by feeding inverse of DESeq’s size Factor
sizeFactors(dds)
#NULL
dds <- estimateSizeFactors(dds)
> sizeFactors(dds)
#WaGa parental cell RNA*
# 1.1242096 2.1097851
#WaGa parental cell RNA 118* WaGa parental cell RNA 147*
# 1.6925780 1.6712182
raw_counts <- counts(dds)
normalized_counts <- counts(dds, normalized=TRUE)
write.table(raw_counts, file="raw_counts.txt", sep="\t", quote=F, col.names=NA)
write.table(normalized_counts, file="normalized_counts.txt", sep="\t", quote=F, col.names=NA)
#1/2,1097851=0,473981924 (!=0.4958732)
bamCoverage --bam ../markDuplicates/WaGa_RNAAligned.sortedByCoord.out.markDups.bam -o WaGa_RNA.bw --binSize 10 --scaleFactor 0.473981924 --effectiveGenomeSize 2864785220
#1/1,6925780=0,590814722 (!=0.6013898)
bamCoverage --bam ../markDuplicates/WaGa_RNA_118Aligned.sortedByCoord.out.markDups.bam -o WaGa_RNA_118.bw --binSize 10 --scaleFactor 0.590814722 --effectiveGenomeSize 2864785220
#1/1,6712182=0,598365911 (!=0.6154516)
bamCoverage --bam ../markDuplicates/WaGa_RNA_147Aligned.sortedByCoord.out.markDups.bam -o WaGa_RNA_147.bw --binSize 10 --scaleFactor 0.598365911 --effectiveGenomeSize 2864785220
DEG analysis
##https://bioconductor.statistik.tu-dortmund.de/packages/3.7/data/annotation/
#BiocManager::install("EnsDb.Mmusculus.v79")
#library(EnsDb.Mmusculus.v79)
#edb <- EnsDb.Mmusculus.v79
#https://bioconductor.org/packages/release/bioc/vignettes/biomaRt/inst/doc/accessing_ensembl.html#selecting-an-ensembl-biomart-database-and-dataset
#https://bioconductor.org/packages/release/bioc/vignettes/biomaRt/inst/doc/accessing_ensembl.html#selecting-an-ensembl-biomart-database-and-dataset
library(biomaRt)
#listMarts() == listEnsembl() == Ensembl Genes 113
listEnsembl()
listMarts()
listEnsemblArchives()
#mkdir degenes
setwd("degenes")
dds$condition <- relevel(dds$condition, "WaGa.RNA")
dds = DESeq(dds, betaPrior=FALSE)
resultsNames(dds)
clist <- c("WaGa.EV_vs_WaGa.RNA")
dds$condition <- relevel(dds$condition, "MKL1.RNA")
dds = DESeq(dds, betaPrior=FALSE)
resultsNames(dds)
clist <- c("MKL1.EV_vs_MKL1.RNA")
#ensembl <- useEnsembl(biomart = "ensembl", dataset = "hsapiens_gene_ensembl", version="112")
#ensembl <- useMart("ensembl", dataset="hsapiens_gene_ensembl", host="https://may2023.archive.ensembl.org")
ensembl <- useMart("ensembl", dataset="hsapiens_gene_ensembl", host="https://www.ensembl.org")
listDatasets(ensembl)
attributes = listAttributes(ensembl)
attributes[1:25,]
for (i in clist) {
#i<-clist[1]
contrast = paste("condition", i, sep="_")
res = results(dds, name=contrast)
res <- res[!is.na(res$log2FoldChange),]
geness <- getBM(attributes = c('ensembl_gene_id', 'external_gene_name', 'gene_biotype', 'entrezgene_id', 'chromosome_name', 'start_position', 'end_position', 'strand', 'description'), filters = 'ensembl_gene_id', values = rownames(res), mart = ensembl)
geness_uniq <- distinct(geness, ensembl_gene_id, .keep_all= TRUE)
#merge by column by common colunmn name, in the case "GENEID"
res$ENSEMBL = rownames(res)
identical(rownames(res), rownames(geness_uniq))
res_df <- as.data.frame(res)
geness_res <- merge(geness_uniq, res_df, by.x="ensembl_gene_id", by.y="ENSEMBL")
dim(geness_res)
rownames(geness_res) <- geness_res$ensembl_gene_id
geness_res$ensembl_gene_id <- NULL
write.csv(as.data.frame(geness_res[order(geness_res$pvalue),]), file = paste(i, "all.txt", sep="-"))
up <- subset(geness_res, padj<=0.05 & log2FoldChange>=2)
down <- subset(geness_res, padj<=0.05 & log2FoldChange<=-2)
write.csv(as.data.frame(up[order(up$log2FoldChange,decreasing=TRUE),]), file = paste(i, "up.txt", sep="-"))
write.csv(as.data.frame(down[order(abs(down$log2FoldChange),decreasing=TRUE),]), file = paste(i, "down.txt", sep="-"))
}
Volcano plot untreated/wt vs parental; 1x für WaGa cell line und 1x für MKL-1 cells
#A canonical visualization for interpreting differential gene expression results is the volcano plot.
library(ggrepel)
# -- WaGa.EV_vs_WaGa.RNA --
geness_res <- read.csv(file = paste("WaGa.EV_vs_WaGa.RNA", "all.txt", sep="-"), row.names=1)
geness_res$Color <- "NS or log2FC < 2.0"
geness_res$Color[geness_res$pvalue < 0.05] <- "P < 0.05"
geness_res$Color[geness_res$padj < 0.05] <- "P-adj < 0.05"
geness_res$Color[geness_res$padj < 0.001] <- "P-adj < 0.001"
geness_res$Color[abs(geness_res$log2FoldChange) < 2.0] <- "NS or log2FC < 2.0"
geness_res$Color <- factor(geness_res$Color,
levels = c("NS or log2FC < 2.0", "P < 0.05",
"P-adj < 0.05", "P-adj < 0.001"))
geness_res$invert_P <- (-log10(geness_res$pvalue)) * sign(geness_res$log2FoldChange)
top_g <- c()
top_g <- c(top_g, geness_res[, 'external_gene_name'][order(geness_res[, 'invert_P'], decreasing = TRUE)[1:200]], geness_res[, 'external_gene_name'][order(geness_res[, 'invert_P'], decreasing = FALSE)[1:200]])
top_g <- unique(top_g)
geness_res <- geness_res[, -1*ncol(geness_res)] #remove invert_P from matrix
png("WaGa_wt.EV_vs_parental.png",width=1400, height=1000)
ggplot(geness_res,
aes(x = log2FoldChange, y = -log10(pvalue),
color = Color, label = external_gene_name)) +
geom_vline(xintercept = c(2.0, -2.0), lty = "dashed") +
geom_hline(yintercept = -log10(0.05), lty = "dashed") +
geom_point() +
labs(x = "log2(FC)",
y = "Significance, -log10(P)",
color = "Significance") +
scale_color_manual(values = c(`P-adj < 0.001` = "dodgerblue",
`P-adj < 0.05` = "lightblue",
`P < 0.05` = "orange2",
`NS or log2FC < 2.0` = "gray"),
guide = guide_legend(override.aes = list(size = 4))) +
scale_y_continuous(expand = expansion(mult = c(0,0.05))) +
geom_text_repel(data = subset(geness_res, external_gene_name %in% top_g & pvalue < 0.05 & (abs(geness_res$log2FoldChange) >= 2.0)),
size = 4, point.padding = 0.15, color = "black",
min.segment.length = .1, box.padding = .2, lwd = 2) +
theme_bw(base_size = 16) +
theme(legend.position = "bottom")
dev.off()
# -- MKL1.EV_vs_MKL1.RNA --
geness_res <- read.csv(file = paste("MKL1.EV_vs_MKL1.RNA", "all.txt", sep="-"), row.names=1)
geness_res$Color <- "NS or log2FC < 2.0"
geness_res$Color[geness_res$pvalue < 0.05] <- "P < 0.05"
geness_res$Color[geness_res$padj < 0.05] <- "P-adj < 0.05"
geness_res$Color[geness_res$padj < 0.001] <- "P-adj < 0.001"
geness_res$Color[abs(geness_res$log2FoldChange) < 2.0] <- "NS or log2FC < 2.0"
geness_res$Color <- factor(geness_res$Color,
levels = c("NS or log2FC < 2.0", "P < 0.05",
"P-adj < 0.05", "P-adj < 0.001"))
geness_res$invert_P <- (-log10(geness_res$pvalue)) * sign(geness_res$log2FoldChange)
top_g <- c()
top_g <- c(top_g, geness_res[, 'external_gene_name'][order(geness_res[, 'invert_P'], decreasing = TRUE)[1:200]], geness_res[, 'external_gene_name'][order(geness_res[, 'invert_P'], decreasing = FALSE)[1:200]])
top_g <- unique(top_g)
geness_res <- geness_res[, -1*ncol(geness_res)] #remove invert_P from matrix
png("MKL-1_wt.EV_vs_parental.png",width=1400, height=1000)
ggplot(geness_res,
aes(x = log2FoldChange, y = -log10(pvalue),
color = Color, label = external_gene_name)) +
geom_vline(xintercept = c(2.0, -2.0), lty = "dashed") +
geom_hline(yintercept = -log10(0.05), lty = "dashed") +
geom_point() +
labs(x = "log2(FC)",
y = "Significance, -log10(P)",
color = "Significance") +
scale_color_manual(values = c(`P-adj < 0.001` = "dodgerblue",
`P-adj < 0.05` = "lightblue",
`P < 0.05` = "orange2",
`NS or log2FC < 2.0` = "gray"),
guide = guide_legend(override.aes = list(size = 4))) +
scale_y_continuous(expand = expansion(mult = c(0,0.05))) +
geom_text_repel(data = subset(geness_res, external_gene_name %in% top_g & pvalue < 0.05 & (abs(geness_res$log2FoldChange) >= 2.0)),
size = 4, point.padding = 0.15, color = "black",
min.segment.length = .1, box.padding = .2, lwd = 2) +
theme_bw(base_size = 16) +
theme(legend.position = "bottom")
dev.off()
# -- under console --
mv WaGa.EV_vs_WaGa.RNA-all.txt WaGa_wt.EV_vs_parental-all.txt
mv WaGa.EV_vs_WaGa.RNA-up.txt WaGa_wt.EV_vs_parental-up.txt
mv WaGa.EV_vs_WaGa.RNA-down.txt WaGa_wt.EV_vs_parental-down.txt
mv MKL1.EV_vs_MKL1.RNA-all.txt MKL-1_wt.EV_vs_parental-all.txt
mv MKL1.EV_vs_MKL1.RNA-up.txt MKL-1_wt.EV_vs_parental-up.txt
mv MKL1.EV_vs_MKL1.RNA-down.txt MKL-1_wt.EV_vs_parental-down.txt
for cmp in "WaGa_wt.EV_vs_parental" "MKL-1_wt.EV_vs_parental"; do
echo "~/Tools/csv2xls-0.4/csv_to_xls.py ${cmp}-all.txt ${cmp}-up.txt ${cmp}-down.txt -d$',' -o ${cmp}.xls"
done
~/Tools/csv2xls-0.4/csv_to_xls.py WaGa_wt.EV_vs_parental-all.txt WaGa_wt.EV_vs_parental-up.txt WaGa_wt.EV_vs_parental-down.txt -d$',' -o WaGa_wt.EV_vs_parental.xls
~/Tools/csv2xls-0.4/csv_to_xls.py MKL-1_wt.EV_vs_parental-all.txt MKL-1_wt.EV_vs_parental-up.txt MKL-1_wt.EV_vs_parental-down.txt -d$',' -o MKL-1_wt.EV_vs_parental.xls
Heatmap untreated/wt vs parental; 1x für WaGa cell line und 1x für MKL-1 cells
install.packages("gplots")
library("gplots")
# -- WaGa cell line --
cut -d',' -f1-1 ./WaGa_wt.EV_vs_parental-up.txt > WaGa_wt.EV_vs_parental-up.id
cut -d',' -f1-1 ./WaGa_wt.EV_vs_parental-down.txt > WaGa_wt.EV_vs_parental-down.id
cat WaGa_wt.EV_vs_parental-up.id WaGa_wt.EV_vs_parental-down.id | sort -u > ids #24207
#add Gene_Id in the first line.
GOI <- read.csv("ids")$Gene_Id
RNASeq.NoCellLine <- assay(rld)
#clustering methods: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). pearson or spearman
datamat = RNASeq.NoCellLine[GOI, c("WaGa parental cell RNA","WaGa parental cell RNA 118","WaGa parental cell RNA 147", "WaGa wt EV RNA","WaGa wt EV RNA 2","WaGa wt EV RNA 118","WaGa wt EV RNA 147","WaGa wt EV RNA 226", "WaGa wt EV RNA 1107","WaGa wt EV RNA 1605","WaGa wt EV RNA 2706")]
hr <- hclust(as.dist(1-cor(t(datamat), method="pearson")), method="average")
hc <- hclust(as.dist(1-cor(datamat, method="spearman")), method="average")
mycl = cutree(hr, h=max(hr$height)/1.05)
mycol = c("YELLOW", "DARKBLUE", "DARKORANGE", "DARKMAGENTA", "DARKCYAN", "DARKRED", "MAROON", "DARKGREEN", "LIGHTBLUE", "PINK", "MAGENTA", "LIGHTCYAN","LIGHTGREEN", "BLUE", "ORANGE", "CYAN", "RED", "GREEN");
mycol = mycol[as.vector(mycl)]
sampleCols <- rep('GREY',ncol(datamat))
names(sampleCols) <- c("WaGa parental cell RNA","WaGa parental cell RNA 118","WaGa parental cell RNA 147", "WaGa wt EV RNA","WaGa wt EV RNA 2","WaGa wt EV RNA 118","WaGa wt EV RNA 147","WaGa wt EV RNA 226", "WaGa wt EV RNA 1107","WaGa wt EV RNA 1605","WaGa wt EV RNA 2706")
#DARKBLUE DARKGREEN DARKRED DARKORANGE
sampleCols["WaGa parental cell RNA"] <- 'GREY'
sampleCols["WaGa parental cell RNA 118"] <- 'GREY'
sampleCols["WaGa parental cell RNA 147"] <- 'GREY'
sampleCols["WaGa wt EV RNA"] <- 'GREEN'
sampleCols["WaGa wt EV RNA 2"] <- 'GREEN'
sampleCols["WaGa wt EV RNA 118"] <- 'GREEN'
sampleCols["WaGa wt EV RNA 147"] <- 'GREEN'
sampleCols["WaGa wt EV RNA 226"] <- 'GREEN'
sampleCols["WaGa wt EV RNA 1107"] <- 'GREEN'
sampleCols["WaGa wt EV RNA 1605"] <- 'GREEN'
sampleCols["WaGa wt EV RNA 2706"] <- 'GREEN'
png("DEGs_Heatmap_WaGa.png", width=1000, height=1200)
heatmap.2(as.matrix(datamat),Rowv=as.dendrogram(hr),Colv = NA, dendrogram = 'row',
scale='row',trace='none',col=bluered(75),
RowSideColors = mycol, ColSideColors = sampleCols, labRow="", margins=c(22,10), cexRow=8, cexCol=2, srtCol=30, lwid=c(1,7), lhei = c(1, 8), legend("top", title = "",legend=c("WaGa parental cell RNA","WaGa wt EV RNA"), fill=c("GREY","GREEN"), cex=1.0, box.lty=0))
dev.off()
# save cluster members
subset_1<-names(subset(mycl, mycl == '1'))
subset_1_ <- getBM(attributes = c('ensembl_gene_id', 'external_gene_name', 'gene_biotype', 'entrezgene_id', 'chromosome_name', 'start_position', 'end_position', 'strand', 'description'),
filters = 'ensembl_gene_id',
values = subset_1,
mart = ensembl)
subset_1_uniq <- distinct(subset_1_, ensembl_gene_id, .keep_all= TRUE)
subset_1_expr <- datamat[subset_1,]
subset_1_expr <- as.data.frame(subset_1_expr)
subset_1_expr$ENSEMBL = rownames(subset_1_expr)
cluster1_YELLOW <- merge(subset_1_uniq, subset_1_expr, by.x="ensembl_gene_id", by.y="ENSEMBL")
#write.csv(cluster1_YELLOW,file='cluster1_YELLOW.txt')
subset_2<-names(subset(mycl, mycl == '2'))
subset_2_ <- getBM(attributes = c('ensembl_gene_id', 'external_gene_name', 'gene_biotype', 'entrezgene_id', 'chromosome_name', 'start_position', 'end_position', 'strand', 'description'),
filters = 'ensembl_gene_id',
values = subset_2,
mart = ensembl)
subset_2_uniq <- distinct(subset_2_, ensembl_gene_id, .keep_all= TRUE)
subset_2_expr <- datamat[subset_2,]
subset_2_expr <- as.data.frame(subset_2_expr)
subset_2_expr$ENSEMBL = rownames(subset_2_expr)
cluster2_DARKBLUE <- merge(subset_2_uniq, subset_2_expr, by.x="ensembl_gene_id", by.y="ENSEMBL")
#write.csv(cluster2_DARKBLUE,file='cluster2_DARKBLUE.txt')
write_xlsx(list(
"Cluster 1 YELLOW" = cluster1_YELLOW,
"Cluster 2 DARKBLUE" = cluster2_DARKBLUE
), "DEGs_heatmap_data_WaGa.xlsx")
# -- MKL-1 cell line --
cut -d',' -f1-1 ./MKL-1_wt.EV_vs_parental-up.txt > MKL-1_wt.EV_vs_parental-up.id
cut -d',' -f1-1 ./MKL-1_wt.EV_vs_parental-down.txt > MKL-1_wt.EV_vs_parental-down.id
cat MKL-1_wt.EV_vs_parental-up.id MKL-1_wt.EV_vs_parental-down.id | sort -u > ids #20720
#add Gene_Id in the first line.
GOI <- read.csv("ids")$Gene_Id
RNASeq.NoCellLine <- assay(rld)
#clustering methods: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). pearson or spearman
datamat = RNASeq.NoCellLine[GOI, c("MKL-1 parental cell RNA","MKL-1 parental cell RNA 118","MKL-1 parental cell RNA 147", "MKL-1 wt EV RNA","MKL-1 wt EV RNA 2","MKL-1 wt EV RNA 27","MKL-1 wt EV RNA 87","MKL-1 wt EV RNA 118", "MKL-1 wt EV RNA 042")]
#Check for Zero Variance Rows; If any row has variance 0, remove it.
#datamat <- datamat[apply(datamat, 1, var) != 0, ]
hr <- hclust(as.dist(1-cor(t(datamat), method="pearson")), method="average")
hc <- hclust(as.dist(1-cor(datamat, method="spearman")), method="average")
mycl = cutree(hr, h=max(hr$height)/1.05)
mycol = c("YELLOW", "DARKBLUE", "DARKORANGE", "DARKMAGENTA", "DARKCYAN", "DARKRED", "MAROON", "DARKGREEN", "LIGHTBLUE", "PINK", "MAGENTA", "LIGHTCYAN","LIGHTGREEN", "BLUE", "ORANGE", "CYAN", "RED", "GREEN");
mycol = mycol[as.vector(mycl)]
sampleCols <- rep('GREY',ncol(datamat))
names(sampleCols) <- c("MKL-1 parental cell RNA","MKL-1 parental cell RNA 118","MKL-1 parental cell RNA 147", "MKL-1 wt EV RNA","MKL-1 wt EV RNA 2","MKL-1 wt EV RNA 27","MKL-1 wt EV RNA 87","MKL-1 wt EV RNA 118", "MKL-1 wt EV RNA 042")
sampleCols["MKL-1 parental cell RNA"] <- 'GREY'
sampleCols["MKL-1 parental cell RNA 118"] <- 'GREY'
sampleCols["MKL-1 parental cell RNA 147"] <- 'GREY'
sampleCols["MKL-1 wt EV RNA"] <- 'GREEN'
sampleCols["MKL-1 wt EV RNA 2"] <- 'GREEN'
sampleCols["MKL-1 wt EV RNA 27"] <- 'GREEN'
sampleCols["MKL-1 wt EV RNA 87"] <- 'GREEN'
sampleCols["MKL-1 wt EV RNA 118"] <- 'GREEN'
sampleCols["MKL-1 wt EV RNA 042"] <- 'GREEN'
png("DEGs_Heatmap_MKL-1.png", width=1000, height=1200)
heatmap.2(as.matrix(datamat),Rowv=as.dendrogram(hr),Colv = NA, dendrogram = 'row',
scale='row',trace='none',col=bluered(75),
RowSideColors = mycol, ColSideColors = sampleCols, labRow="", margins=c(22,10), cexRow=8, cexCol=2, srtCol=30, lwid=c(1,7), lhei = c(1, 8), legend("top", title = "",legend=c("MKL-1 parental cell RNA","MKL-1 wt EV RNA"), fill=c("GREY","GREEN"), cex=1.0, box.lty=0))
dev.off()
# save cluster members
subset_1<-names(subset(mycl, mycl == '1'))
subset_1_ <- getBM(attributes = c('ensembl_gene_id', 'external_gene_name', 'gene_biotype', 'entrezgene_id', 'chromosome_name', 'start_position', 'end_position', 'strand', 'description'),
filters = 'ensembl_gene_id',
values = subset_1,
mart = ensembl)
subset_1_uniq <- distinct(subset_1_, ensembl_gene_id, .keep_all= TRUE)
subset_1_expr <- datamat[subset_1,]
subset_1_expr <- as.data.frame(subset_1_expr)
subset_1_expr$ENSEMBL = rownames(subset_1_expr)
cluster1_YELLOW <- merge(subset_1_uniq, subset_1_expr, by.x="ensembl_gene_id", by.y="ENSEMBL")
#write.csv(cluster1_YELLOW,file='cluster1_YELLOW.txt')
subset_2<-names(subset(mycl, mycl == '2'))
subset_2_ <- getBM(attributes = c('ensembl_gene_id', 'external_gene_name', 'gene_biotype', 'entrezgene_id', 'chromosome_name', 'start_position', 'end_position', 'strand', 'description'),
filters = 'ensembl_gene_id',
values = subset_2,
mart = ensembl)
subset_2_uniq <- distinct(subset_2_, ensembl_gene_id, .keep_all= TRUE)
subset_2_expr <- datamat[subset_2,]
subset_2_expr <- as.data.frame(subset_2_expr)
subset_2_expr$ENSEMBL = rownames(subset_2_expr)
cluster2_DARKBLUE <- merge(subset_2_uniq, subset_2_expr, by.x="ensembl_gene_id", by.y="ENSEMBL")
#write.csv(cluster2_DARKBLUE,file='cluster2_DARKBLUE.txt')
write_xlsx(list(
"Cluster 1 YELLOW" = cluster1_YELLOW,
"Cluster 2 DARKBLUE" = cluster2_DARKBLUE
), "DEGs_heatmap_data_MKL-1.xlsx")
Distribution of different RNA Species untreated/wt and parental; 1x für WaGa cell line und 1x für MKL-1 cells
cd ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/read_distributions
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/WaGa_RNAAligned.sortedByCoord.out.read_distribution.txt WaGa_parental_cell_RNA_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/WaGa_RNA_118Aligned.sortedByCoord.out.read_distribution.txt WaGa_parental_cell_RNA_118_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/WaGa_RNA_147Aligned.sortedByCoord.out.read_distribution.txt WaGa_parental_cell_RNA_147_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/WaGa_EV-RNAAligned.sortedByCoord.out.read_distribution.txt WaGa_wt_EV_RNA_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/WaGa_EV-RNA_2Aligned.sortedByCoord.out.read_distribution.txt WaGa_wt_EV_RNA_2_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/WaGa_EV-RNA_118Aligned.sortedByCoord.out.read_distribution.txt WaGa_wt_EV_RNA_118_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/WaGa_EV-RNA_147Aligned.sortedByCoord.out.read_distribution.txt WaGa_wt_EV_RNA_147_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/WaGa_EV-RNA_226Aligned.sortedByCoord.out.read_distribution.txt WaGa_wt_EV_RNA_226_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/1107_WaGa_wt_EVAligned.sortedByCoord.out.read_distribution.txt WaGa_wt_EV_RNA_1107_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/1605_WaGa_wt_EVAligned.sortedByCoord.out.read_distribution.txt WaGa_wt_EV_RNA_1605_read_distribution.txt
cp ../../../Data_RNA-Seq_WaGa/results/rseqc/read_distribution/2706_WaGa_wt_EVAligned.sortedByCoord.out.read_distribution.txt WaGa_wt_EV_RNA_2706_read_distribution.txt
cp ../../../Data_RNA-Seq_MKL-1/results/rseqc/read_distribution/MKL-1_RNAAligned.sortedByCoord.out.read_distribution.txt MKL-1_parental_cell_RNA_read_distribution.txt
cp ../../../Data_RNA-Seq_MKL-1/results/rseqc/read_distribution/MKL-1_RNA_118Aligned.sortedByCoord.out.read_distribution.txt MKL-1_parental_cell_RNA_118_read_distribution.txt
cp ../../../Data_RNA-Seq_MKL-1/results/rseqc/read_distribution/MKL-1_RNA_147Aligned.sortedByCoord.out.read_distribution.txt MKL-1_parental_cell_RNA_147_read_distribution.txt
cp ../../../Data_RNA-Seq_MKL-1/results/rseqc/read_distribution/MKL-1_EV-RNAAligned.sortedByCoord.out.read_distribution.txt MKL-1_wt_EV_RNA_read_distribution.txt
cp ../../../Data_RNA-Seq_MKL-1/results/rseqc/read_distribution/MKL-1_EV-RNA_2Aligned.sortedByCoord.out.read_distribution.txt MKL-1_wt_EV_RNA_2_read_distribution.txt
cp ../../../Data_RNA-Seq_MKL-1/results/rseqc/read_distribution/MKL-1_EV-RNA_27Aligned.sortedByCoord.out.read_distribution.txt MKL-1_wt_EV_RNA_27_read_distribution.txt
cp ../../../Data_RNA-Seq_MKL-1/results/rseqc/read_distribution/MKL-1_EV-RNA_87Aligned.sortedByCoord.out.read_distribution.txt MKL-1_wt_EV_RNA_87_read_distribution.txt
RNA fragmentation patterns: is EV-RNA full length or fragmented?
Since our data consists of single-end RNA-Seq reads, determining the exact RNA fragment length is challenging, as only the read length is available. Unlike paired-end sequencing, where insert size can be calculated, single-end sequencing does not provide direct information about the full fragment size.
点赞本文的读者
还没有人对此文章表态
没有评论
Functional Clustering of Genes Based on COG Terms Using Eggnog and Blast2GO
KEGG and GO annotations in non-model organisms
RNA-seq Tam on Acinetobacter baumannii strain ATCC 19606 CP059040.1 (Data_Tam_RNAseq_2024)
Enhanced Visualization of Gene Presence for the Selected Genes in Bongarts_S.epidermidis_HDRNA
© 2023 XGenes.com Impressum