gene_x 0 like s 345 view s
Tags: genes
library(ggplot2)
library(plotly)
# Create some random data
set.seed(123)
x <- rnorm(100)
y <- rnorm(100)
z <- rnorm(100)
# Perform PCA
data <- data.frame(x, y, z)
pca <- prcomp(data, scale = TRUE)
scores <- as.data.frame(pca$x)
# Create 3D scatterplot using ggplot2 and plotly
ggplot(scores, aes(x = PC1, y = PC2, z = PC3)) +
geom_point(size = 3, color = "blue") +
labs(x = "PC1", y = "PC2", z = "PC3") +
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black", size = 0.5),
panel.border = element_blank()) +
scale_x_continuous(limits = c(-4, 4), expand = c(0, 0)) +
scale_y_continuous(limits = c(-4, 4), expand = c(0, 0)) +
scale_z_continuous(limits = c(-4, 4), expand = c(0, 0)) +
coord_cartesian(xlim = c(-4, 4), ylim = c(-4, 4), zlim = c(-4, 4)) +
ggtitle("3D Scatterplot using PCA") +
theme(plot.title = element_text(size = 12, face = "bold"))
This code creates a 3D scatterplot using ggplot2 and the plotly package. It first generates some random data and performs principal component analysis (PCA) on it. The resulting PCA scores are then plotted in a 3D scatterplot. The labs() function is used to set the axis labels, and the ggtitle() function is used to set the plot title. The scale_x_continuous(), scale_y_continuous(), and scale_z_continuous() functions are used to set the axis limits, and the coord_cartesian() function is used to ensure that the plot is displayed with the specified limits. The theme() function is used to adjust the appearance of the plot.
点赞本文的读者
还没有人对此文章表态
没有评论
Functions of Polyomavirus sT and LT Proteins
Regulating Gene Expression in Diploid Organisms with Different Haplotypes
© 2023 XGenes.com Impressum