There are 332 articles for you to read.

炎症体:先天免疫与细胞自主免疫交汇的关键节点

Author: gene_x

Abstract: Inflammasomes at the crossroads of innate and cell-autonomous immunity 炎症体位于先天免疫和细胞自主免疫的交汇点,其在我们体内的免疫防御中发挥着重要作用。 先天免疫是我们身体对抗病原体(如细菌、病毒和其他有害微生物)的第一道防线。它包括一系列的防御机制,如皮肤、粘液层和吞噬细胞等,这些机制可以迅速识别和消灭入侵者。 细胞自

pheatmap vs heatmap.2

Author: gene_x

Abstract: [![viral_deg_pheatmap](/static/deg_heatmaps/viral_deg_pheatmap.png "viral_deg_pheatmap")](/static/deg_heatmaps/viral_deg_pheatmap.png "viral_deg_pheatmap") [![viral_deg_heatmap2](/static/deg_heatmaps

RNA-seq analysis for characterizing HSV-1 infection of human skin organoid

Author: gene_x

Abstract: 单纯疱疹性脑炎是由单纯疱疹病毒(HSVs)引起的中枢神经系统的致命疾病。在使用抗病毒药物阿昔洛韦进行标准治疗后,大多数患者仍然出现各种神经后遗症。在这里,我们通过结合单细胞RNA测序、电生理和免疫染色来描述人脑器官样本中的HSV-1感染。我们观察到组织完整性、神经元功能和细胞转录组的强烈扰动。在阿昔洛韦治疗下,病毒复制被停止,但并未防止HSV-1引发的缺陷,如神经元过程和神经上皮的损伤。对感染后失

GSVA-plot for carotis RNA-seq data

Author: gene_x

Abstract: [![Carotis_RNA-seq_grid_1](/static/carotis_plots/Carotis_RNA-seq_grid_1.png "Carotis_RNA-seq_grid_1")](/static/carotis_plots/Carotis_RNA-seq_grid_1.png "Carotis_RNA-seq_grid_1") 1. preparing gene exp

GSVA-plot for carotis nanoString data

Author: gene_x

Abstract: [![Carotis_NanoString](/static/carotis_plots/Carotis_NanoString.png "Carotis_NanoString")](/static/carotis_plots/Carotis_NanoString.png "Carotis_NanoString") [![Carotis_NanoString_grid_1](/static/car

Plotting Alpha Diversities from 16S rRNA Sequencing Data

Author: gene_x

Abstract: Plot Chao1 richness estimator, Observed OTUs, Shannon index, and Phylogenetic diversity. Regroup together samples from the same group. [![alpha_diversity1_resized](/static/plotting_alpha_diversities/

RNA-seq skin organoids on GRCh38+chrHsv1 (final)

Author: gene_x

Abstract: [![PCA_3D_cropped](/static/rnaseq_skin_organoid_herpesvirus/PCA_3D_cropped.png "PCA_3D_cropped")](/static/rnaseq_skin_organoid_herpesvirus/PCA_3D_cropped.png "PCA_3D_cropped") [![normalization_small]

Normalization of RNA-seq and ChIP-seq data

Author: gene_x

Abstract: Normalization methods for RNA-seq data 1. DESeq (RLE - Relative Log Expression): - Goal: To normalize for differences in library size and distribution of read counts. - Method: Uses a medi

RNA-seq skin organoids on GRCh38+chrHsv1

Author: gene_x

Abstract: 3. import data and pca-plot # Import the required libraries library("AnnotationDbi") library("clusterProfiler") library("ReactomePA") library(gplots) l

RNA-seq on sage

Author: gene_x

Abstract: 1. TODO on sage check the alignment of the reads to the annotation which sent from Munich is very bad, using the reference X14112 instead, find the CMV-GFP in the genome. Using alignment to detec


© 2023 XGenes.com Impressum