There are 326 articles for you to read.

Antibodies and cell lines that are commonly used in research

Author: gene_x

Abstract: >http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHistone Antibody: - CBP (SC-369) - H3K4me1 - H3K4me2 - H3K4me3 - H3K9ac - H3K9me1 - H3K9me3 - H3K27ac - H3K27me3 - H3K36me3 - H3K79me

Gonna、wanna、gotta

Author: huang

Abstract: 1. Gonna 將會 Gonna 是 (be) going to 的非正式用法,表示「某人將會/將要做某事」的意思,常見於口語對話或是流行歌曲中,是一種比較輕鬆的表達方式,其句型為「主詞+be 動詞+gonna+原形動詞」。 A: Dylan, do you have any plans for Chinese New Year ? A:Dylan,你農曆年有沒有什麼計畫? B: Oh

Identifying the Nearest Genomic Peaks within Defined Regions

Author: gene_x

Abstract: To find the closest peaks in the genome regions defined by a bed file, you can use a tool like BEDTools. BEDTools provides a function `closest` which allows you to find the closest feature in a second

LiftOver: An Essential Utility for the Conversion of Genomic Coordinates

Author: gene_x

Abstract: If you have genomic coordinates (like gene positions, SNP positions etc) in hg19 and want to convert them to hg38, you'd use what's known as a "liftover". The UCSC Genome Browser provides a tool speci

Analysis of Peak Distribution in Promoters

Author: gene_x

Abstract: import pprint import argparse import matplotlib.pyplot as plt import pandas as pd import gffutils import numpy as np #db = gffutils.create_db('gencode.v43.annotation.gtf', dbfn='gencode.v43.an

Clustering of Promoter Types Based on Motif Frequency and Distribution

Author: gene_x

Abstract: To implement the clustering of promoter types based on motif frequency and distribution using Python, you can follow these steps: 1. Import the required libraries: import pandas as pd import num

Snakefile

Author: gene_x

Abstract: import os ####################################################### ############### Snakefile Configuration ############### ####################################################### configfile: "ba

单细胞RNA测序数据分析步骤

Author: gene_x

Abstract: 单细胞RNA测序数据分析的具体步骤包括以下几个阶段: 1. 数据预处理:这一步涉及到对原始测序数据进行质量控制,包括移除低质量的测序读段,对读段进行修剪,以及对可能的污染序列进行识别和移除。这一步骤是为了确保后续的分析基于的是高质量的数据。 2. 比对和定量:接下来的步骤是将预处理后的读段比对到参考基因组上,并且对每个细胞中每个基因的表达量进行定量。比对可以使用如STAR, HISAT2等工具

Exploring DNA Motifs with Custom Bash Script

Author: gene_x

Abstract: #!/bin/bash #./search_motif4.sh test1.fasta GRG 5 if [ $# -ne 3 ]; then echo "Usage: $0 <fasta_file> <motif> <context>" exit 1 fi fasta_file=$1 motif=$2 context=$3 motif_regex=$(echo

Defining and Categorizing Promoter Types Based on the 'GRGGC' Motif Frequency, Distribution, and Distance to the Transcription Start Site (TSS)

Author: gene_x

Abstract: To provide a more detailed explanation of how to define promoter types based on the frequency and distribution of the 'GRGGC' motif on both + and - strands within the promoter region, I will outline t


© 2023 XGenes.com Impressum